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ABSTRACT
We study the problem of link prediction in coupled networks, where
we have the structure information of one (source) network and
the interactions between this network and another (target) network.
The goal is to predict the missing links in the target network. The
problem is extremely challenging as we do not have any informa-
tion of the target network. Moreover, the source and target net-
works are usually heterogeneous and have different types of nodes
and links. How to utilize the structure information in the source
network for predicting links in the target network? How to lever-
age the heterogeneous interactions between the two networks for
the prediction task?

We propose a unified framework, CoupledLP, to solve the prob-
lem. Given two coupled networks, we first leverage atomic prop-
agation rules to automatically construct implicit links in the target
network for addressing the challenge of target network incomplete-
ness, and then propose a Coupled Factor Graph Model to incorpo-
rate the meta-paths extracted from the coupled part of the two net-
works for transferring heterogeneous knowledge. We evaluate the
proposed framework on two different genres of datasets: disease-
gene (DG) and mobile social networks. In the DG networks, we
aim to use the disease network to predict the associations between
genes. In the mobile networks, we aim to use the mobile commu-
nication network of one mobile operator to infer the network struc-
ture of its competitors. On both datasets, the proposed CoupledLP
framework outperforms several alternative methods. The proposed
problem of coupled link prediction and the corresponding frame-
work demonstrate both the scientific and business applications in
biology and social networks.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications; J.4
[Social and Behavioral Sciences]: Sociology
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1. INTRODUCTION
Link prediction is a fundamental problem in social networks, at-

tracting considerable interest from different research fields, e.g.,
computer science [27, 38, 4], network science [7, 42], and biol-
ogy [30, 5, 36, 8, 14]. Typically, the link prediction problem is for-
malized as: given a snapshot of a network at time t, predict which
links will be created in the following time t+1. The problem can be
addressed by using unsupervised methods such as Adamic/Adar [1]
and random walk with restart [37], or supervised learning mod-
els such as supervised random walk [3] and random forest [28] by
defining a set of features.

In this paper, we study the link prediction problem in an interest-
ing new setting: coupled networks, where we have two networks:
one source network GS and one target network GT . Basically, we
have structure information of the source network GS and interac-
tions GC between the two networks, but do not have any structure
information for the target network. The objective of link prediction
here is to predict the existence of links in the target network GT .

The problem exists in many data mining applications. As the
example illustrated in Figure 1, the disease-gene coupled networks
are decomposed as a disease network (Fig. 1(b)), a gene network
(Fig. 1(d)), and a cross network that links source and target net-
works together (Fig. 1(c)). Link prediction in coupled networks is
then formalized as a problem of using the disease network and as-
sociations between diseases and genes to predict the relationships
that exist between two genes (Fig. 1(b) + Fig. 1(c)→ Fig. 1(d)).
Solving the problem automatically is quite useful, because other-
wise arduous and expensive medical experiments on a huge selec-
tion by biologists and geneticists are required to figure out the links
in the gene network [28]. In other domains such as social networks,
the problem is also very important. In mobile social networks,
an operator such as AT&T is motivated to infer the link structure
among users of its competitors (such as Verizon and T-Mobile); Or
in online social networks, it would be very useful for Google+ to
acquire new users by having Facebook connections among GMail
users who are registered Facebook users.

Coupled network link prediction is different from the classical
link prediction problem [27, 28, 42, 23], which generally aims at
predicting the future links in the next time period. Meanwhile,
the proposed problem differs from link prediction in heterogeneous
network [43, 45, 38, 22, 2], in which partial multi-typed links are
given to predict the remaining single- or multi-typed links. Our
problem is also different from the problem of transfer link predic-
tion [6, 11, 39], which focuses on leveraging the estimated param-
eters in one network to improve the prediction performance of the
other network based on the common features between the two net-
works. Finally, our problem is different from the problem of cross-
domain link prediction [40, 20], whereas it aims to predict the links



(a) Coupled Disease-Gene Network (b) Disease Network (c) Cross Network (d) Gene Network
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Figure 1: Illustrative example of link prediction in coupled disease-gene networks. (a) Coupled disease-gene network; (b) Disease network;
(c) Cross network; (d) Gene network. Taking disease network as the source and gene network as the target, the problem of coupled link prediction
aims to predict the links in gene network (d) by leveraging both the disease network (b) and cross network (c).

Table 1: Differences of link prediction problems.We take the disease and gene networks in Figure 1 as an example.
Problem Transfer link prediction [6, 11] Cross-domain link prediction [40, 20] Heterogeneous link prediction [45, 38] Coupled link prediction

Input disease network
+ (part of gene network)

disease network
+ gene network

+ (part of cross network)
part of coupled networks

disease network
+ cross network

+ (part of gene network)
Output remaining links in gene network remaining links in cross network remaining links in coupled networks links in gene network

in the cross network (Fig. 1(c)) between two networks. We summa-
rize the differences of different link prediction problems in Table 1.
The significant advantage of the proposed problem lies in that it
can be applied to real applications such as inferring the links in a
competitor’s or enemy’s network to better understand it.

This coupled link prediction problem presents several unique
challenges. First, incompleteness, we do not have structure infor-
mation between two users in the target network—that is, there is
a visibility of links that go from the source network to the target
network but not beyond that. Second, heterogeneity, the source and
target networks with multi-typed objects are twisted and coupled
with one another. This makes it difficult to directly use a super-
vised learning approach due to the different types of links in source
and target networks. Third, asymmetry, following the heterogene-
ity, the two coupled networks usually present different network
properties—such as the average degree k or clustering coefficient
cc as shown in Table 2.

In light of these differences and challenges, we present a unified
two-phase framework CoupledLP to predict links in coupled net-
works. At the first phase, we leverage atomic propagation rules to
propagate the implicit knowledge from the source network to the
target network and construct “complete” coupled networks. At the
second phase, we first extract features from the “complete” cou-
pled networks, and then generate informative meta-paths from the
coupled part between the source and target networks. We then pro-
pose a supervised Coupled Factor Graph Model to incorporate the
meta-paths as structural correlation factors. Our contributions can
be summarized as follows:

• We formally define a novel problem of coupled link predic-
tion in networks and propose a unified CoupledLP frame-
work to solve it.

• We propose a Coupled Factor Graph Model to utilize the im-
plicit knowledge for predicting links in the target network.
To incorporate the heterogeneous information between two

networks, we define the meta-paths extracted from the cou-
pled networks as structural correlation features.

• Finally, our experimental results on two different types of
coupled networks demonstrate the effectiveness of the pro-
posed CoupledLP framework. CoupledLP significantly out-
performs several state-of-the-art link prediction algorithms
on different networks.

The datasets used in the paper are three sets of large-scale real-
world coupled networks, in which the first are the networks with
diseases and genes coupled together as shown in Figure 1(a), the
second are the mobile communication networks from three opera-
tors coupled together with 712 million call records in a European
country, and the last are also the mobile networks from two oper-
ators with 42 million calling records in an Asian city. The experi-
mental results on the large-scale real networks demonstrate that 1)
CoupledLP offers a greater than 84% potential predictability for de-
termining the existence of phenotypic links between disease pairs
and 2) a mobile operator—such as AT&T—can achieve an accuracy
of 80% for predicting the top links of its competitor’s network—
such as Verizon.

Organization. Section 2 formalizes the problem of link prediction
in coupled networks; Section 3 presents the proposed framework
to solve the problem; Section 4 explains the experimental results;
Section 5 discusses related work and Section 6 concludes the work.

2. PROBLEM DEFINITION
Generally, we use G = {V,E} to denote a network, where V =
{vi} is the set of nodes, andE ⊆ V ×V is the set of links between
nodes, with each link denoted as eij = (vi, vj) ∈ E.

Definition 1. Coupled networks and cross network: Given a
source network GS = (V S , ES) and a target network GT =
(V T , ET ), they compose coupled networks if there exists a cross
link eij with one node vi ∈ V S and the other node vj ∈ V T . The



cross network GC = (V C , EC) is a bipartite network containing
all the cross links in the coupled networks.

Figure 1(a) shows a typical example of coupled networks with
a disease network as the source network GS and a gene network
as the target network GT . The links between diseases and genes
represent the genetic association links between them, which, with
their linked nodes inGS andGT , constitute the cross networkGC .

Problem 1. Coupled network link prediction: Given the
source network GS and the cross network GC in coupled networks
G = (GS , GT , GC), the task is to find a predictive function:

f : (GS , GC)→ Y T

where Y T is the set of labels for the potential links in the target
network GT , with yij = 1 indicating a link exists between vi and
vj , and yij = 0 indicating no link exists between them. Henceforth
we use ye to denote the label of a link e.

For the nodes in the target network without any links associ-
ated in the cross network, it is intractable to predict the links
among them. In this sense, the objective actually can be reduced
to predicting the links in the target network among the nodes
contained in both the target network and the cross network, i.e.,
{v ∈ V T ∩ V C}. However, in this work we still abbreviate the
objective as predicting links in the target network GT .

The coupled network link prediction problem is general for both
directed and undirected networks. In this work, both kinds of net-
works are investigated, including directed mobile networks and
undirected disease-gene networks. The details of the datasets are
introduced in Section 4.1.

The fundamental challenge of this problem is how to capture
the link formation patterns in the target network with little prior
knowledge about its network structure and a few heterogeneous in-
formation about the cross network. In the traditional link prediction
problem, we usually can observe most of the network structure,
thus the patterns used to predict links can be easily obtained. How-
ever, in our problem, the link structure between two users in the
target network is totally opaque, which makes the problem non-
trivial. Therefore, how to effectively capture the features of the
links in the target network without any inside information becomes
a significant challenge.

3. COUPLED NETWORK LINK PREDIC-
TION FRAMEWORK

In this section, we first introduce the framework to solve the pro-
posed link prediction problem in coupled networks, and then ex-
plain the two main phases in the framework respectively.

3.1 CoupledLP Framework
To solve the challenges of coupled link prediction, we propose a

framework, CoupledLP, to first enrich the target network structure,
from which we then extract features and predict the links in the
target network.

At the first phase, we infer the possible links [24] with the high-
est potential in the target network based on several heuristic rules.
We name the inferred network as an implicit target network. The
motivation is with the highly probable links inferred at first, we can
extract more informative structural features for the links to be pre-
dicted. Otherwise, the target network is difficult to be leveraged for
extracting features.

At the second phase, based on the implicit target network, we
propose a Coupled Factor Graph Model (CoupledFG) to predict
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Figure 2: Atomic propagations in coupled networks.

the links in the target network. The idea is to use both features
extracted from the implicit target network and the structural meta-
paths extracted from coupled networks.

3.2 Implicit Target Network Construction
To enrich the structural information in the target network, we

construct an implicit target network based on three atomic propa-
gation rules proposed in [15, 25], which include direct propagation,
coupling propagation, and co-citation propagation. The three rules
explain several real life phenomena such as information propaga-
tion in social networks, and traffic flow in railway or flight net-
works. Figure 2 illustrates how to infer the implicit links in the
target network by using the three atomic propagation rules. In the
figure, the links between vT1 and vT2 are to be predicted in the tar-
get network, the links denoted by the solid line are observable in
the cross network, the objective is to infer the unknown links with
high probability based on the observed links.

Direct Propagation. Figure 2(a) illustrates direct propagation.
Suppose we observe many indirect links pointing from vT1 to vT2 ,
such as vT1 → vS3 → vT2 and vT1 → vS4 → vT2 in the cross net-
work. This indicates the potential direct propagation between the
two nodes vT1 and vT2 in the target network. For example, in flight
networks, when passengers always fly from Chicago to Boston
through transferring at New York, or fly from Chicago to Boston
through transferring at Detroit and so on, the airlines will proba-
bly feel the requirements and add the direct flights from Chicago to
Boston.

Coupling Propagation. Figure 2(b) illustrates coupling propaga-
tion. Suppose we observe vT1 and vT2 always link to one common
node, e.g., vS3 or vS4 , it then indicates that the two nodes vT1 and
vT2 also link to each other. A real case about Facebook wall posts
may well explain the phenomenon. Generally, it is highly probable
that the users who post comments on the same message know each
other. Moreover, the more comments there are posted on a common
message, the more likely they are friends.

Co-citation Propagation. Figure 2(c) illustrates co-citation prop-
agation. Suppose we observe vT1 and vT2 are always linked by one
common node, e.g., vS3 or vS4 . This indicates that the two nodes vT1
and vT2 also link to each other. An intuitive case is the paper cita-
tion network. If two papers are always cited together by the other
papers, it will be more likely that they share similar research topics,
and that one paper may also cite another one.

Formally, we represent the network structure of the cross net-
work as a matrix M , with each element Mij as the transition prob-
ability between node vi and vj . In a static network,Mij can be cal-
culated as the normalized link strength between node vi and vj . In
a dynamic network, the duration between two sequential propaga-



tions can be incorporated into the transition probability [29]. Then
the network structure in the target network can be represented as
the matrix multiplication, MM , according to the direct propaga-
tion rule, MMT , according to the coupling propagation rule, and
MTM , according to the co-citation rule. We combine the three re-
sults together to represent the final network structure of the target
network. Specifically, the network structure M∗ of the target net-
work is shown as follows: M∗ = MM +MMT +MTM . There
are several ways to construct the implicit target network GT

′
by

using M∗. For example, we can map the resulted matrix element
M∗ij into a probability space and construct a probabilistic target
network [24]. In this work, we select the top z% links ranked by
M∗ij as the inferred links in the implicit target network, where z is
threshold parameter to prune the noisy links inferred by the three
propagation rules.

Although the atomic propagation rules are explained by the di-
rected networks, when applied in the undirected networks, the three
rules can be simply reduced into the same rule denoted by MM
because M = MT . There are other methods for inferring the im-
plicit network structure, such as random walk with restart or di-
rectly counting common neighbors. However, the proposed propa-
gation method is empirically proved to perform better than several
alternative methods in Section 4.

3.3 Coupled Factor Graph Model
This section proposes a Coupled Factor Graph Model (Cou-

pledFG) to predict the label set Y T for the links in the target net-
workGT based on the network structure in the source networkGS ,
cross network GC , and the implicit target network GT

′
inferred

in the first phase. Our goal is to train a supervised classification
model.

Model description. We treat the links in GT with two nodes
contained in V T ∩ V C as the candidates to predict. Specifically,
we first extract features xe from (GS , GC , GT

′
) for each link e

in the candidate set and learn the weights for different features by
using our proposed Coupled Factor Graph Model. We then estimate
a formation probability P (ye|xe) for each link in the test set.

The objective of our model is to maximize the formation proba-
bility of the links in coupled networks given the observed features
and the model parameters, i.e., P (Y |X, G). In factor graph, the
“global” probability can be factorized as a product of “local” factor
functions [21], which is relatively easy to optimize.

The attribute feature vector Xe for each link can be defined as
different types, such as the number of common friends, the Jac-
card distance, the score of random walk with restart between the
two nodes of the link. However, due to the asymmetry of the two
coupled networks, the features extracted for edges in the source
network GS and edges in the (implicit) target network GT (GT

′
)

may be located in different spaces. We have to use two separate sets
of factors to capture the attributes of edges in the source network
GS and the (implicit) target network GT , respectively, and factor-
ize the conditional probability P (X|Y ) of generating attributes X
for links given their labels Y as:

P (X|Y ) ∝
∏
e∈ES

K∏
k=1

P (xSek|ySe )
∏
e∈ET

K∏
k=1

P (xTek|yTe ) (1)

where P (xSek|ySe ) is the probability of generating the kth fea-
ture xSek in the source network given the label ySe . Accordingly,
P (xTek|yTe ) is the probability of generating the kth feature xTek in
the target network given the label yTe , and K is the number of at-
tribute features.

In addition to the features defined on source and target networks
separately, we define the structural factor P (Y |G) in coupled net-
works to bridge the source and target networks. The meta-path
based methods have been demonstrated as effective solutions for
solving the heterogeneity of link prediction tasks [46, 38]. The ma-
jor issue here is how to design informative meta-paths in coupled
networks and utilize them in the factor graph model.

We design meta-paths in coupled networks as follows. Following
the definitions in the work [38], we define the schema of coupled
networks to be S = (Q,R), where Q = {SQ, TQ} with SQ as
the set of node types in the source network and TQ as the set of
node types in the target network, R = {SR, TR, CR} with SR as
the set of relation types in the source network, TR as the set of
relation types in the target network, and CR as the set of relation
types in the cross network. For example, in coupled disease-gene
networks, we have Q = {Disease, Gene} and R = {D-D relation,
G-G relation, D-G relation}. We define the following meta-paths,
based on their physical mechanisms, with illustrative examples in
disease-gene networks.

SQTQSQ: Disease
express−1

−−−−−−→ Gene
express

−−−−−→ Disease, which means two
diseases are expressed by one gene.

TQSQTQ: Gene
express

−−−−−→Disease
express−1

−−−−−−→ Gene, which means one dis-
ease is expressed by two genes.

SQ[TQTQ]rSQ: Disease
express−1

−−−−−−→ [ Gene
associate
−−−−−→ Gene ]r

express

−−−−−→
Disease, which means two diseases are expressed by r associated genes.

TQ[SQSQ]rTQ: Gene
express

−−−−→ [ Disease
family

−−−−→ Disease ]r
express−1

−−−−−−→
Gene, which means two genes express r diseases belonging to one family.

We now introduce how to model the coupled meta-paths in factor
graphs. Again, according to the theory of factor graph [21], the
probability P (Y |G) of labels given the structure of the network
can be factorized over all meta-paths in networks as following:

P (Y |G) ∝
∏
π∈Π

P (Yπ) (2)

where Π denotes the pre-defined meta-path set in coupled networks
and π is a group of meta-paths in Π. Yπ denotes the labels of candi-
date links instantiated by the group of meta-paths π. For example,
two candidate links e1 and e2 that share the same meta-paths can be
defined as Yπ = (ye1 , ye2). The modeling of meta-paths as struc-
tured heterogeneous correlations makes our method different from
previous work, in which meta-paths are usually used as a vector of
attributes for machine learning models.

Given the probability P (X|Y ) of generating the attribute fea-
tures X and P (Y |G) of generating meta-path based structural fea-
tures, the conditional distribution over the coupled networks is fac-
torized as:

P (Y |X, G) ∝ P (X|Y ) · P (Y |G)

∝
∏
e∈ES

K∏
k=1

P (xSek|ySe )
∏
e∈ET

K∏
k=1

P (xTek|yTe )
∏
π∈Π

P (Yπ) (3)

Now the problem becomes how to instantiate the probabilities
P (xek|ye) and P (Yπ) in Eq. (3). In principle, they can be instan-
tiated in different ways. In this work, we model them by Markov
random fields based on Hammersley-Clifford theorem [17], which
states that a probability distribution that has a positive density sat-
isfies one of the Markov properties with respect to an undirected
graph if and only if it is a Gibbs random field. And the density of
the probability distribution can be factorized over the cliques of the



graph. Thus the three probabilities in Eq. (3) can be initialized as:

P (xSek|ySe ) =
1

Zα
exp{αkfk(xSek, y

S
e )} (4)

P (xTek|yTe ) =
1

Zβ
exp{βkgk(xTek, y

T
e )} (5)

P (Yπ) =
1

Zγ
exp{γπhπ(Yπ)} (6)

where αk, βk, and γπ are the corresponding weights of the factor
functions, respectively representing the influence degree of the kth

factor function f(·) and g(·), and πth factor function h(·). f(·) and
g(·) are defined as a vector of feature functions in source and target
networks, respectively. Similarly, h(·) is defined as a vector of
indicator functions. Zα, Zβ , and Zγ are the normalization factors.

Parameter estimation. The parameters to be estimated are θ =
{{α}, {β}, {γ}}. We learn the parameters through maximizing
the logarithm of the likelihood function P (Y |X, G, θ). Based on
Eqs. (3), (4), (5), and (6), the log-likelihood objective function can
be written as:

O(θ) =
∑
e∈ES

( K∑
k=1

αkfk(xSek, y
S
e )
)

+
∑
e∈ET

( K∑
k=1

βkgk(xTek, y
T
e )
)

+
∑
π∈Π

γπhπ(Yπ)− logZ (7)

where Z = ZαZβZγ is a normalization factor. In this objective
function, the first term and second term respectively define the
likelihood over the source network and the target network sepa-
rately, and the third term defines the likelihood over the meta-paths
through the cross network that connects the source and target net-
works. Such a definition implies that while the source and target
networks are optimized with different parameters {α} and {β},
the coupled networks are bridged by the parameters {γ} of the
meta-path factors. The idea here is inspired by the model proposed
in [39], wherein Tang et al. presented a transfer-based method
for inferring social tie across heterogeneous networks. The dif-
ference lies in that [39] uses common factors—defined based on
social theories—extracted from source and target networks sepa-
rately to bridge them, while in this work we use factors defined on
meta-paths that naturally connect two coupled networks.

To solve the log-likelihood function, we adopt a gradient descent
algorithm (or Newton-Raphson algorithm). Specifically, we derive
the gradients of each parameter with regards to Eq. (7). For exam-
ple, the gradients for each αk and γπ are derived as:

O(θ)

αk
= E[fk(xSek, y

S
e )]− EPαk (ySe |X)[fk(xSek, y

S
e )] (8)

O(θ)

γπ
= E[hπ(Yπ)]− EPγπ (Yπ|X,G)[hπ(Yπ)] (9)

where E[tθ(·)] (tθ(·) represents fk(xSek, y
S
e ) or hπ(Yπ)) is the ex-

pectation of factor function tθ(·) given the data distribution of the
input network, and EPθ(Y |X,G)[tθ(·)] represents the expectation of
factor function under the distribution Pθ(Y |X, G) learned by the
model.

Usually, it is intractable to estimate the marginal probability in
the second term of Eq. (8) and (9) as the graphical structure can be
arbitrary and may contain cycles. In this work, we use loopy belief
propagation (LBP) [31] to approximate the gradients. The learning

algorithm contains two main parts: First, perform LBP algorithm
to calculate corresponding marginal distributions; Second, update
each parameter to maximize the objective function. It is worth not-
ing that the learning process perform the LBP algorithm twice in
each iteration, one is for estimating the marginal distribution of
unknown variables and the other for marginal distribution over all
cliques. In this way, the algorithm utilizes the unlabeled informa-
tion in the learning process. Finally, each parameter is updated with
the learning rate η:

θnew = θold + η · O(θ)

θ
(10)

The time complexity of the learning algorithm at each iteration is
O(|Ecand| · |y| + |Epair| · |y|2) if considering the candidate link
pairs connected by meta-paths as structural factors, where |Ecand|
is the number of candidate links, |y| is the number of labels, and
|Epair| is the number of pairs of candidate links that are connected
by meta-paths.

Link prediction. After we obtain the learned parameters θ =
{{α}, {β}, {γ}}, we estimate the link labels Y T in the test set. All
the links in the test set are assigned with labels that can maximize
the marginal probabilities with the estimated parameters:

Y T? = arg maxO(Y L|X, G, θ).

where the LBP algorithm is used to solve this problem.
Due to the computing complexity, it is intractable to enu-

merate all meta-paths in given coupled networks. There are
several ways to determine the choice of meta-paths. We use
the physical meaning in real world as a principle to choose
meta-paths [38], and limit the length of meta-paths into three
and four. Taking disease-gene networks as an example, we
choose four types of meta-paths, including the following cases:
1) Disease−Gene−Disease, which means two diseases are ex-
pressed by one gene; 2) Disease−Gene−Gene−Disease, which
means two diseases are expressed by two associated genes; 3)
Gene−Disease−Gene, which means one disease is expressed by
two genes; 4) Gene−Disease−Disease−Gene, which means two
genes express two diseases who belong to one family. The first two
types of meta-paths are used for predicting from gene network to
disease network, and reversely, the last two are used for predicting
links in gene network from disease network.

3.4 Summary
In conclusion, targeting at the three challenges in coupled net-

work link prediction problem, we propose a unified framework
CoupledLP that contains two phases. At the first phase, we con-
struct an implicit target network to solve the incompleteness of the
target network. At the second phase, we model attribute features by
using separate sets of parameters to address the issue of the asym-
metry of the source and target networks. We then incorporate in-
formative meta-paths as the structural factors into factor graphs to
untangle the heterogeneity of coupled networks.

4. EXPERIMENTS
In this section, we evaluate our proposed framework, CoupledLP,

for predicting links in coupled networks on three networks and
demonstrate its effectiveness. The disease-gene dataset and code
are publicly available1.
1http://aminer.org/CoupledLP



Table 2: Statistics of the three sets of coupled networks. k: average degree; cc: clustering coefficient; ac: associative coefficient. The asymmetry
of network properties between source and target networks is revealed.

D G D ↔ G Aa Ab Aa ↔ Ab Ea Eb Ec Ea ↔ Eb Ea ↔ Ec Eb ↔ Ec

#Nodes 703 1132 1835 348,640 63,687 235,715 2,531,187 655,755 354,166 1,912,933 1,255,046 625,379
#Links 74523 2450 10483 613,614 96,325 306,213 3,355,197 649,322 311,432 1,844,342 1,131,593 507,894
k 212.01 4.33 11.43 3.52 3.02 2.59 2.65 1.98 1.75 1.92 1.80 1.62
cc 0.2639 0.0377 0 0.0237 0.0225 0 0.0457 0.0366 0.0317 0 0 0
ac -0.0256 0.1761 -0.2556 0.2011 0.1671 0.0654 0.2848 0.2693 0.2806 0.0231 -0.0305 0.1113

Table 3: Statistics of the candidate and positive links in constructed coupled networks.
Statistics D to G G to D Aa to Ab Ab to Aa Ea to Eb Eb to Ea Ea to Ec Ec to Ea Eb to Ec Ec to Eb
#Candidate links 243,393 19,014 376,416 1,280,959 972,808 2,594,169 424,793 1,655,878 252,471 372,421
#Positive links 1,582 11,015 25,694 57,138 179,265 373,511 83,657 232,814 46,954 63,544
%Positive links 0.65% 57.93% 6.83% 4.46% 18.43% 14.40% 19.69% 14.06% 18.60% 17.06%

4.1 Datasets
We use two types of coupled networks to evaluate our proposed

framework, including Disease-Gene networks, Asian mobile net-
works with two operators, and European mobile networks with
three operators. Table 2 summaries the statistics of the constructed
coupled networks from the three datasets. Clearly, we can see the
network properties are asymmetric between source and target net-
works.

Disease-Gene networks (DG). The dataset contains a disease net-
work (D), a gene network (G) and the connections between dis-
eases and genes [8]. Disease pairs are connected by a phenotypic
link if there exist significant co-morbidities in real patients (Fig-
ure 1(b)). Gene pairs are connected by protein-protein interaction
links in accordance with combined physical interaction data col-
lected from Human Protein Reference Database (HPRD) and the
Online Predicted Human Interaction Database [8] (Figure 1(d)).
Genetic association links exist between diseases and genes in a
bipartite graph and represent known disease-gene associations ex-
tracted from the Online Mendelian Inheritance in Man database,
SwissProt, and HPRD [8] (Figure 1(c)).

Asian mobile networks (A). This is a dataset used in [13], con-
taining about 42 million call records in an Asian city from October
2005 to March 2006. We construct directed networks from the call
records by treating each user as a node and creating a link between
two users if there exists at least one call record between them. A
weight is assigned to a link to represent the number of call records.
To conduct our task of link prediction in coupled networks, we con-
struct different coupled networks by treating one operator network
as source network, another operator network as target network, and
the connections between the two networks as the cross network.
Two operators are involved in this dataset, which are denoted as
Aa and Ab with the size |Aa| > |Ab|. We construct two different
coupled networks by using Aa and Ab.

European mobile networks (E). This is a dataset used in [28,
12], containing more than 712 million call records in a European
country within two months, i.e., August and September, in 2011.
There are three major operators in the mobile networks. We denote
the communication network of each of the three operators as Ea,
Eb and Ec, respectively with the size |Ea| > |Eb| > |Ec|. The
European mobile networks are constructed in the same way as the
Asian mobile networks. In total, we construct six coupled networks
by using this dataset.

4.2 Feature Definition
Basically, for network analysis or graph mining, a series of topo-

logical features are usually defined to solve the problem. In this pa-
per, we define the similar features as those defined in HPLP+ [28].
We take an weighted undirected network as example to explain fea-
tures defined for one potential link eij between two nodes vi and
vj . The features include common-neighbor based and path based
features.

Common-neighbor based features include the number of com-
mon neighbors (CN), Adamic/Adar (AA), and Jaccard Coefficient
(JC), and Preferential Attachment (PA). CN simply counts the num-
ber of common neighbors between two nodes vi and vj . AA also
counts the number of common neighbors, but weights each com-
mon neighbor by rarity, which is the reciprocal of a node’s de-
gree [1]. JC calculates the ratio of common neighbors among the
union set of vi’s and vj’s neighbors. PA calculates the similarity
between vi and vj by the product of their degrees.

Among several alternative path based features, we choose
PropFlow (PF) [28] rather than Katz and Random Walk with
Restart (RWR), due to their high computing complexity. PF cal-
culates the similarity by conducting random walks from vi to vj
with a restricted number of steps. We set the number of maximal
steps as 4. However, Katz and RWR need to sum over all possible
paths between vi and vj .

4.3 Experimental Setup

Candidate generation. We explain how to generate candidate
links for the prediction tasks. The total number of the potential
links equals to |V | × |V |, which is usually very large. Thus, we
follow the general method [42, 3] to treat candidate links as those
with two nodes at most 2-hops away from each other in the net-
work. Table 3 summarizes the statistics of the candidate and posi-
tive links in the coupled networks. From the table, we can see that
the percentage of the positive links varies from 4% to 19% for the
mobile networks, however, this ratio is only 0.65% for the coupled
D to G networks constructed from the disease and gene networks,
which is extremely imbalanced. Due to the incompleteness of tar-
get network in coupled network link prediction, only 1% of target
candidate links are treated as training set and the remaining as test
links.

Comparison methods. We compare CoupledLP with both the un-
supervised and supervised methods for the task of link prediction in
coupled networks. For the unsupervised methods, we directly use
the above defined features, CN, AA, JC, PA, and PF, to rank links
due to their competitive predictive power in both our experiments



Table 4: The performance of AUPR on different methods.
Method D to G G to D Aa to Ab Ab to Aa Ea to Eb Eb to Ea Ea to Ec Ec to Ea Eb to Ec Ec to Eb
CN 0.0155 0.6011 0.3017 0.1348 0.3598 0.2319 0.3817 0.2079 0.3145 0.2654
AA 0.0167 0.5912 0.3344 0.1596 0.4541 0.2800 0.4838 0.2562 0.3802 0.3180
JC 0.0803 0.4812 0.0835 0.0903 0.3848 0.3082 0.4140 0.3429 0.3628 0.3579
PA 0.0083 0.7566 0.0820 0.0599 0.1446 0.1287 0.1525 0.1250 0.1560 0.1471
PF 0.0233 0.5501 0.1455 0.0989 0.3504 0.2248 0.3722 0.2138 0.2833 0.2446
IT 0.0155 0.6011 0.3715 0.2059 0.4344 0.3157 0.4568 0.2940 0.4008 0.3559
LRC-IT 0.0140 0.7830 0.3610 0.1880 0.4580 0.3140 0.5240 0.2870 0.4230 0.3500
LRC 0.0190 0.7930 0.3820 0.2030 0.4920 0.3160 0.5190 0.2910 0.4270 0.3590
DT-IT 0.0070 0.6270 0.2760 0.1050 0.3440 0.1620 0.3810 0.1550 0.2900 0.2260
DT 0.0080 0.6310 0.2530 0.1030 0.3580 0.1640 0.3470 0.1557 0.3060 0.2420
CoupledLP-IT 0.0303 0.8249 0.4291 0.2483 0.5088 0.3484 0.5257 0.3240 0.4537 0.3855
CoupledLP 0.0249 0.8432 0.4305 0.2776 0.5481 0.3591 0.5420 0.3399 0.4692 0.4133

Table 5: The performance of AUROC on different methods.
Method D to G G to D Aa to Ab Ab to Aa Ea to Eb Eb to Ea Ea to Ec Ec to Ea Eb to Ec Ec to Eb
CN 0.6384 0.5330 0.6754 0.5896 0.6090 0.5556 0.6133 0.5418 0.5736 0.5552
AA 0.6544 0.5289 0.7658 0.6933 0.7408 0.6664 0.7486 0.6357 0.6826 0.6543
JC 0.6507 0.3666 0.5974 0.5220 0.7186 0.6116 0.7280 0.5977 0.6652 0.6327
PA 0.4850 0.7073 0.5802 0.5615 0.3835 0.4460 0.3746 0.4462 0.4131 0.4270
PF 0.6426 0.4890 0.7275 0.7006 0.7339 0.6649 0.7389 0.6554 0.6736 0.5552
IT 0.6384 0.5330 0.7735 0.7273 0.6867 0.6435 0.6969 0.6335 0.6756 0.6618
LRC-IT 0.5450 0.7160 0.7590 0.7280 0.7580 0.6930 0.7750 0.6840 0.7200 0.6890
LRC 0.6230 0.7320 0.8210 0.7750 0.7670 0.7070 0.7730 0.6950 0.7290 0.7030
DT-IT 0.5010 0.5830 0.7190 0.6260 0.6690 0.5480 0.6930 0.5410 0.6340 0.5920
DT 0.5140 0.5930 0.7460 0.6530 0.6750 0.5510 0.6730 0.5440 0.6450 0.6040
CoupledLP-IT 0.6825 0.7586 0.8052 0.7424 0.7597 0.7017 0.7664 0.6885 0.7314 0.7004
CoupledLP 0.6790 0.7865 0.8336 0.7807 0.7779 0.7127 0.7769 0.7016 0.7405 0.7157

and the previous work [27]. The propagation method (IT) proposed
in Section 3.2 is also used as an unsupervised method.

For the supervised methods, we choose Decision Tree (DT) and
Logistic Regression Classification (LRC) used in [3]. All the meth-
ods consider the above defined features. Both DT and LRC simply
consider the coupled networks as a homogeneous network.

CoupledLP is our proposed framework that includes both the
implicit target network construction at the first phase (z = 10)
and the CoupledFG model at the second phase. DT-IT, LRC-IT,
CoupledLP-IT are the reduced versions of three supervised meth-
ods above that exclude the implicit target network construction at
the first phase.

Evaluation metrics. For unsupervised methods, we rank links by
the similarity scores calculated by these methods. For supervised
methods, we rank test links by the probability P (ye|xe, G; θ) gen-
erated by them. We evaluate the ranking results by using the area
under the Receiver Operating Characteristic curve (AUROC), the
area under the Precision-Recall curve (AUPR), and precision at top
k%, where we change k from 1 to 10 with 1 as the interval and
from 10 to 100 with 10 as the interval in our experiments. AU-
ROC, AUPR and precision at top ranked links are typically used in
the evaluation of link prediction tasks [46, 28, 35, 23, 42, 3, 44].

4.4 Experimental Results
In this section, we first present the prediction performance of

our proposed CoupledLP framework compared with the baselines;
second, verify the effects of implicit target network construction;
finally discuss the implications in biology and social networks.

Performance comparison. Tables 4 and 5 show the performance
for different methods in terms of AUROC and AUPR on all the con-

structed 10 coupled networks. Figure 3 presents the curve of the
precision at top k% ranked links. Generally, we can see that our
proposed CoupledLP outperforms the other baselines for AUPR,
AUROC and precision at top k% ranked links in most coupled net-
works. We also conduct t-test for our results, which shows that all
the improvements of our proposed CoupledLP over other baselines
are statistically significant (p� 0.001).

IT performs better in most cases than the unsupervised methods
in terms of AUPR in Table 4 and precision at top k% in Figure 3,
which demonstrates the effectiveness of our proposed propagation
method. That forms the reason that we select it to transfer implicit
information from the source to the target network at the first phase
in our framework.

The proposed CoupledLP performs better than both the super-
vised and unsupervised baselines in terms of AUROC. The simi-
lar results can be obtained as measured by AUPR in Table 4. We
also note that the unsupervised method JC achieves the best AUPR
score in D to G case. Figure 3 presents the precision at top k%
ranked links of our method CoupledLP and three baselines CN, IT,
and LRC, which obtain the best performance comparing to other
baselines. We can see from the figure that the proposed CoupledLP
exhibits an improvement of 5%-10% in terms of precision from top
1% to 100% ranked links.

From both tables, we can see that the supervised methods (LRC,
DT, and CoupledLP) outperform their reduced versions (LRC-IT,
DT-IT, and CoupledLP-IT) that don’t use the features extracted
from the constructed implicit target network. This demonstrates
the effectiveness of the first phase in our CoupledLP framework.

However, we also observe that in the coupled networks D to G,
the prediction performance in terms of AUPR is quite limited, while
the performance is good on the coupled networks G to D. The rea-
son lies in that in the prediction case from D to G the candidate links
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Figure 3: Precision at top k%. X-axis: k (log scale); Y-axis: precision.
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Figure 4: Pruning ratio z% on implicit target network con-
struction from gene to disease. X-axis: z; Y-axis: AUC.

are extremely imbalanced, with only 0.65% positive instances and
the remaining over 99% as negative ones.

Effect of implicit target network. We verify the effect of the im-
plicit target network constructed at the first phase of our framework
from two aspects.

First, we compare the performance of CoupledLP-IT with Cou-
pledLP in Tables 4 and 5. They clearly show that CoupledLP
outperforms CoupledLP-IT in terms of both AUPR and AUROC,
which demonstrates the positive effect of the implicit target net-
work constructed at the first phase.

Second, we also verify the effect of the implicit target network
directly. Specifically, we first construct the implicit target network
and then rank the links based on each unsupervised method ex-
ecuted in the “complete” coupled network with the implicit target
network merged in (z > 0). We compare the evaluation results with
those predicted in the coupled networks without the implicit target
network (z = 0). The results shown in Figure 4 further demonstrate
the effect of the implicit target network.

Convergence and efficiency. The learning process of our Cou-
pled Factor Graph Model model at the second phase can converge
within 200 iterations in most cases. The model code is largely de-
veloped from previous work [39], which is implemented in C++.
The experiments are run on a server with Intel(R) i7 Quad-Core
@2.6GHz, 16GB memory, and installed with MAC OS X Maver-
icks. We test the running time of each supervised method and find
that for training the largest coupled network (Eb to Ea) with more
than 2.59 million candidate links, LRC, DT, and Coupled Factor
Graph Model models cost around 73, 68, and 30 seconds (each iter-
ation), respectively. Note that the proposed CoupledLP also needs
to extract meta-paths to construct structural correlations, which is
not included in the training time. Although the proposed method
needs relatively high computing cost, it is able to handle real large
networks in an acceptable duration.

4.5 Applications
Our proposed coupled link prediction problem has potential ap-

plications in both scientific research and business intelligence. We
discuss the applications of this problem in biology and social net-
works.

Biology. The identification of new associations between two genes
or two diseases has been an important task in biology [30, 36]. A
tremendous number of costly biological and genetic experiments
have been conducted to explore the existence of genetic associa-
tions between two diseases or two genes [14, 8]. Essentially, the
biologists and geneticists greedily choose each pair of diseases or
genes and then examine whether there is an association between
each pair. In this work, we demonstrate that the coupled link pre-
diction problem can be directly applied to reduce the human efforts
on the task. The proposed CoupledLP offers a higher 84% (AUPR)
potential predictability for determining the existence of phenotypic
links between diseases.



Figure 5: Illustrative example of link prediction in coupled mo-
bile social networks. The source network is AT&T communication
network and the target network is Verizon communication network.
AT&T has the communication information between its users and users
of another operator (Verizon). The objective is to predict the implicit
links in the target (Verizon) network.

Social Networks. There are also potential applications in social
networks. Figure 5 shows an illustrative example in coupled mo-
bile social networks. In mobile social networks, a mobile operator
such as AT&T has the communication network of its users and also
the communication information between its users and users of an-
other operator (e.g., Verizon). AT&T is highly motivated to acquire
new users from competitors and prevent customer churns by taking
the advantages of knowing competitors’ network structure and user
connections. By applying our coupled link prediction problem and
CoupledLP framework into mobile data, a mobile operator such as
AT&T can achieve an accuracy of 80% for predicting the links of its
competitor’s network (e.g., Verizon). Or in online social networks,
a significant amount of users may register their Facebook accounts
by using their Gmail accounts. It’s also useful for Google+ to rec-
ommend “people you may know” to its users by knowing the Face-
book connections between its Gmail users.

5. RELATED WORK
Link prediction has attracted considerable attentions in various

of fields. Generally, the methods can be divided into unsupervised
and supervised methods. A survey [27] provides thorough summa-
rization of unsupervised methods. Most of the unsupervised meth-
ods are based on similarity measure between two nodes [27], e.g.,
common neighbors, Adamic/Adar index [1], Jaccard Coefficient,
Preferential Attachment, Katz, Random Walk with Restart [37] and
so on. More recently, researchers adopt supervised algorithms for
link prediction [18]. Backstrom and Leskovec [3] designed a su-
pervised random walk for friend prediction and recommendation in
Facebook. Rendle et al. [34] proposed factorization machines and
Kim and Leskovec [19] proposed a generative model and used EM
algorithm to solve the problem. Spatial and temporal features were
also incorporated into the supervised learning framework in several
research [35, 42, 23]. Li et al. [26] used deep learning techniques to
predict links in dynamic networks. The problem investigated in this
paper is totally different from the existing link prediction problems.
We propose to predict the links in one network by using the struc-
ture information of another network and the interactions between
them, which is a novel and non-trivial problem. Besides, Leroy et
al. [24] studied the problem of cold start in link prediction by using
text and explicit information outside the networks. We propose to

construct an implicit target network in our framework to also solve
the cold start problem, however, the difference lies in that we only
leverage the network structure without any other text information.

Several research has been conducted on predicting links in het-
erogeneous networks [38, 43, 22, 2, 45]. However, its objective
is to predict different types of links, which is different from ours.
Extensive research predicts links across multiple social networks
or domains [20, 6, 11, 33, 46], while the objectives are still dif-
ferent. One kind focuses on leveraging the estimated parameters
in one network to improve the prediction performance of the other
network based on the common features between them, named as
transfer link prediction. The other kind aims at predicting links in
the cross network between two networks.

Our problem is also related to some link analysis tasks in social
networks such as relation type prediction [9, 39, 41] and social tie
strength prediction [16, 32, 10]. However, they usually target at an-
alyzing the type or strength of a link, while we focus on predicting
whether the link exists or not.

6. CONCLUSION
In this paper, we formalize a novel and non-trivial link predic-

tion problem, named as link prediction in coupled networks, which
aims at predicting the links in one network by using the pure struc-
ture information of another network and the interactions between
the two networks. The major challenge of the problem is the miss-
ing links of the target network, which makes it difficult to extract
features and training instances. We propose a unified framework,
CoupledLP, which first propagates the knowledge from the source
network to the target network and then use a coupled factor graph
model to incorporate the implicit knowledge in the target network
for the link prediction. The coupled factor graph model considers
both the attribute features in each network and the structural meta-
path based features between the two networks. The experiments
on two large-scale mobile social networks and one disease-gene
network show that our proposed framework outperforms several
alternative baseline methods.

The problem of link prediction in coupled networks provides a
new and practical research direction for link prediction. For fu-
ture work, in addition to network structure, other information can
be also leveraged to help predict the target links. It is also natural
to design methods to automatically determine informative meta-
paths in coupled networks. Furthermore, it is necessary to pro-
pose more efficient methods to integrate the general knowledge be-
tween source and target networks and capture the underlying mech-
anisms that drive link formation in coupled networks. Additionally,
it would be interesting to investigate the social behavior of the users
in the cross network between two networks. Will it be different
from the behavior within one source or target network? To ana-
lyze the influence or conformity of those users in the cross network
would be an interesting research topic.
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