
Recommendation over a Heterogeneous Social Network

Jing Zhang#1, Jie Tang#2, Bangyong Liang*3, Zi Yang#4, Sijie Wang#5, Jingjing Zuo#6, and Juanzi Li#7
#Department of Computer Science and Technology, Tsinghua University

1,2,6,7{zhangjing, tangjie, zjj, ljz}@keg.cs.tsinghua.edu.cn
4yangtseyangtse@163.com, 5thuarmymen@gmail.com

*NEC Laboratories, China
3liangbangyong@research.nec.com.cn

Abstract

With the Web content having been changed from

homogeneity to heterogeneity, the recommendation
becomes a more challenging issue. In this paper, we
have investigated the recommendation problem on a
general heterogeneous Web social network. We
categorize the recommendation needs on it into two
main scenarios: recommendation when a person is
doing a search and recommendation when the person
is browsing the information. We formalize the
recommendation as a ranking problem over the
heterogeneous network. Moreover, we propose using a
random walk model to simultaneously ranking
different types of objects and propose a pair-wise
learning algorithm to learn the weight of each type of
relationship in the model. Experimental results on two
real-world data sets show that improvements can be
obtained by comparing with the baseline methods.

1. Introduction

Recommendation is an effective way to reduce the
cost for finding information and also a powerful way
to attract customers. It has been widely used in many
e-commence applications, e.g., Amazon.com,
CDNOW.com, eBay.com, Reel.com, and so on.

Recently, many methods have been proposed for
recommendation, for example, content-based filtering
[2], collaborative filtering [8], clustering model [4],
classification model [3], graph model [1], and
association rule approach [10]. The proposed
approaches have been applied to the traditional Web
applications, which usually need recommend only one
type of information (e.g., Amazon recommends books,
news.baidu.com recommends news, and
movielens.com recommends movies). Nowadays,
social networks consisting of different types of
information become popular (e.g., a common social
network indicated by Fig. 1 is composed of users,

categories, resources, tags, and complex relationships
between them). The flourish of the heterogeneous
social networks provides a new environment for
validating the recommendation methods, at the same
time brings new challenges, e.g., how to recommend
the heterogeneous information simultaneously?

Figure 1. A common social network

In this paper, we intend to conduct a complementary
study for the recommendation problem in the
heterogeneous Web social networks. We will mainly
focus on non-personalized recommendation, as it can
be extended to the personalized setting by combing the
user behavior logs and user preference profiles. Hence,
the major problems addressed here are: 1) How to
formalize the recommendation problem in a
heterogeneous Web social network? 2) How to
determine the strategies for recommending different
types of objects simultaneously in different scenarios,
as the requirements for different scenarios might be
different also?

Specifically, for a heterogeneous Web social
network, we categorize the recommendation needs into
two main scenarios and design corresponding
strategies: (a) recommendation of different types of
objects when a person searches for one type of object
and (b) recommendation of different types of objects
when the person is browsing one specific object. We
formalize the recommendation as that of ranking over
a heterogeneous graph and propose using a random

walk model for ranking. For specifying the weights of
different relationships in the random walk model, we
propose a pair-wise learning algorithm. We conducted
experiments on two real-world systems: an online
information sharing system (Powazi, www.powazi.com)
and an academic social network system (Arnetminer,
www.arnetminer.org). Both experimental results show
that the proposed method can outperform the baseline
methods of using language model and PageRank
without learning the weights of relationships.

Advantages of the proposed approach for
recommendation include: 1) it is not necessary to
manually specify the weights for different types of
relationships; 2) the approach can recommend different
types of objects simultaneously; 3) the approach has
been empirically verified on two real-world systems.

The rest of the paper is organized as follows. In
Section 2, we formalize the recommendation problem
in a heterogeneous network. In Section 3, we explain
our approach for recommendation. In Section 4, we
present our experiments and in Section 5, we review
the related works. Finally, we conclude the paper.

2. Problem setting

The structure of a Web social network varies largely
depending on the application itself. This work intends
to address the recommendation problem in a general
setting, which thus can be easily extended to deal with
different specific scenarios.

The notations used in the paper can be summarized
as follows. Assume there are n objects with types {C,
U, R, T}, where C indicates category, U indicates user,
R indicates resource, and T indicates tag. In particular,
there are nR resources rk (k=1,...,nR) collected by nU
users uj (j=1,..., nU). Moreover, these resources belong
to nC categories ci (i=1, ... , nC) and are annotated by nT
tags tl (l=1,…, nT). (Here, a resource can be referred to
as a Web page, a musical item, or a movie. The notion
of category and tag is very popular in Web 2.0
applications.)

The relationships in “category-user-resource-tag”
form a directed heterogeneous graph (as shown in Fig.
2). Specifically, we define the graph as G=(VC∪VU∪

VR∪VT, EUC∪ECU ∪EUR∪ERU∪EUT∪ETU∪EUU∪

ECT∪ETC∪ECR ∪ERC∪ERT∪ETR), where VC is a set
of categories, VU is a set of users, VR is a set of
resources, and VT is a set of tags. The relationship
between a category and a user is recorded in ECU,
likewise for the others. We consider recommendation
in a direct graph, thus each undirected edge in the
graph is represented as two directed edges, i.e. {cj,
ui}=(cj, ui)∪(ui, cj).

TCCT

CR
RC

U
C

C
U

Figure 2. A formalized heterogeneous graph

Further, we define the transition probabilities λ
between different types of nodes (cf. Fig. 2). The
transition probability λ has an intuitive explanation. It
can be viewed as the probability of a user jumps/clicks
the targeted type of object when she/he is viewing the
source type of object or it can be viewed as the weight
of the relationship between two types of objects.
According to the transition probability theory, we need:

1, 1,
1, 1 0

UT UC UR UU TR TU TC

CT CU CR RT RU RC XY

λ λ λ λ λ λ λ
λ λ λ λ λ λ λ

+ + + = + + =
+ + = + + = , > (1)

In real world social networks, the relationships
types would be rather complex. The difficulty lies in
how to define λ for different types of relationships. We
will describe the problem in Section 3.2.

Based on the scenario that a person is using the Web,
the recommendation needs can be classified into two
main categories:
1) Browsing: do recommendations when a person is

browsing one object. The problem is that we need
to ‘understand’ what the person is interested in
when she/he is browsing the object. A simple
method might be finding the similar objects based
on the content. However, in the Web social
network, we need also consider the relationships.
For example, the relationships between users and
the current browsed resource.

2) Search: do recommendation of different types of
objects when a person searches for one type of
object by a query. Of course, we can simply find
similar objects of other types based on the content.
The challenge is still how to make use of the
relationships between different types of objects.

3. Our approach

Our approach is aimed at dealing with the

recommendation problems of the two categories. The
approach mainly consists of three steps:

1) Global importance estimation. We use a
random walk model to estimate the global
important score for each object. The process is

similar as that in PageRank [14]. The difference
is that we are addressing a heterogeneous graph
(with different types of objects) while
PageRank is concerned with a homogeneous
graph. We need to consider the weight of
different types of relationships.

2) Relevance estimation. We calculate the
relevance score of each object with the current
scenario that the person is using the Web.
When a person is conducting a search, the
relevance score is calculated based on the query.
When a user is browsing an object, the
relevance score is calculated based on the key
terms extracted from the profile of the object
(e.g., the profile of a resource can be defined as
the concatenation of its title, description, and
content).

3) Recommendation. We propose several
strategies for the recommendations under
different scenarios, which can be viewed as the
combination of the above two steps. Section 3.2
will give the details of the strategies.

For the first step, we formalize the problem in a
random walk model and propose a pair-wise learning
algorithm for automatically adjusting the weights of
different types of relationships. For the second step, we
employ the language model to estimate the relevance.
For the third step, we further categorize the two
recommendation scenarios into several sub problems
and propose different strategies for each of them. We
especially focus on the first and the third steps.

3.1. Global importance estimation

This section first formalizes the problem using a

random walk model and then presents a pair-wise
learning algorithm to estimate parameters in the model.

3.1.1. Random walk over a heterogeneous graph.
Based on the random walk theory, the transition graph
(cf. Fig. 2) formalizes a random surfer’s behaviour as:
when a random surfer is at a user node ui, then he/she
will have λUT probability to browse (also called “jump
to”) tags used or created by the current user, or have
λUC probability to browse related categories, or have
λUR probability to browse related resources, or have
λUU probability to browse the friends of the current user.

We consider random walk over the heterogeneous
graph by transforming the entire network into a
transition matrix, denoted as M. Each element mij is
denoted as a probability walking from node i to node j.
For example, let node i be ui∈VU and node j be rj∈VR:

1
_ ()i ju r

i R

m
Out Degree u V

=
→

 (2)

where Out_Degree(ui→VR) is the number of directed
edges from ui to nodes in VR (in essence, indicates the
number of resources that user ui is collected). Similarly,
we can easily define all the transition probabilities
between different types of nodes in the network.

In addition, we need consider λ. The intuition is that
when a random surfer is at node i with type X, she/he
has a probability of λXY to jump to node set with type Y
and then has a probability of λXY*mij to jump to a
particular node j with type Y. Thus the transition
probability from ui to rj can be defined as:

(|)
i jj i UR u rP r u mλ= (3)

DEFINITION 1. The importance score vector is a
stationary distribution of the matrix M:

,= = Ts As A M (4)
Furthermore, similar to PageRank, we introduce a

random jump parameter α, which allows the random
surfer to randomly jump to all the other nodes:

' (1) , (1/ ,...,1.) (1,...,1)n nα α= − + = TM M E E (5)
where n is the total number of nodes in the network, i.e.
n=|VU|+|VC|+|VR|+|VT|. Given this, we can easily use the
iterative method to find the scores for each node type:

(1)

()
U

CU CU C RU RU R TU TU T UU UU U

α α
λ λ λ λ

= + −

× + + +T T Τ Τ

s E

M s M s M s M s
(6)

(1) ()C UC UC U RC RC R TC TC Tα α λ λ λ= × + − × + +T T Ts E M s M s M s (7)
(1) ()T CT CT C UT UT U RT RT Rα α λ λ λ= × + − × + +T T Ts E M s M s M s (8)
(1) ()R CR CR C UR UR U TR TR Tα α λ λ λ= × + − × + +T T Ts E M s M s M s (9)

where, sU is the vector of scores for all users, likewise
for sC, sR, and sT; MCU, MRU, MTU, and MUU
respectively represent the transition probabilities from
categories to users, from resources to users, from tags
to users, and from users to users.

We can simplify (6)-(9) formulas in a general form:
(1)

XY

Y XY XY X
λ

α α λ
∈Λ

= × + − × ∑ Ts E M s (10)

where X and Y are any node types, sX and sY are the
rank vectors for type X and Y, λXY is the transition
probability from type X to type Y, Λ is the set of λXY,
and MXY is the transition matrix corresponding with the
relationship type XY.

Now, for performing the random walk on the
heterogeneous graph, we need quantify the value of
each λXY. Previously, the values are often assigned by
manual or empirically, e.g., [16]. Several approaches
have been proposed for learning the parameters
automatically, e.g., a list-wise method [13]. In this
paper, we propose a pair-wise learning algorithm.

3.1.2. A pair-wise learning algorithm for
parameters learning. The heterogeneous graph may
have many parameters λXY. We can see from Fig. 2,
there is a set of parameter Λ= {λCT, λCU, λCR, λUC, λUT,

λUR, λUU, λRC, λRU, λRT, λTC, λTU, λTR }. Actually, in a real
world system, the objects and the relationships would
be rather complex. It would be highly infeasible to
assign them manually. The other simple way is to
averagely specify the values for all the parameters,
thus, the random walk on the heterogeneous graph is
decayed as a random walk on a homogeneous graph by
viewing all the objects with the same type, which is the
same as the PageRank on the traditional Web.
However, we argue that the weight of each type of
relationship should not be treated equally. For example,
when a random surfer stays at a user node, she/he may
jump to the user’s collected resources with higher
probability than the tags that the user used. The setting
of the parameters might be critical to the final
recommendation results. Actually, this is also a general
problem for ranking in the Web 2.0 applications.

The main idea of the proposed algorithm is: given a
training data set, we aim at finding a ranking function
with parameters that can best fit the training data.

The training data is denoted as a set A = {(i, j)},
where, for each component, i and j are the selected pair
of objects of the same type with the importance score
of i larger than j. Our objective then is to make the
importance score pairs estimated by our random walk
algorithm identical with those in the training data.
Thus, the objective function is defined as:

(,)
ˆmax

. . 1,
1, 1,
1, 0

ij iji j A

UT UC UR UU

TR TU TC CT CU CR

RT RU RC XY

L y y

s t λ λ λ λ
λ λ λ λ λ λ
λ λ λ λ

∈
=

 + + + =
 + + = + + =
+ + = >

∑
(11)

where yij is an indicator function (ˆijy is the true value
of training data, yij is the estimated value by the
random walk algorithm):

1, 0

1, 0
i j

ij
i j

s s
y

s s

 − ≥⎧⎪= ⎨− − <⎪⎩
 (12)

For each node i, its importance score si is estimated
by equation (10). si-sj is the difference between two
importance score, which can by caculated by:

() ()

(1) ()
XY

i j XY ki k kj k
type ki XY type kj XY

s s m s m s
λ

α λ
∈Λ = =

− = − −∑ ∑ ∑ (13)

We put the equations (12) and (13) into equation
(11) and set the derivative function equal to zero:

(,) () ()
ˆ

ˆ: (1)()

ij ij

XY ij ki k kj k
i j A type ki XY type kj XYXY

y y

L y m s m sλ α
λ ∈ = =

∩ ≠

∂ Δ = − −∑ ∑ ∑ (14)

The derivative function can be viewed as the
learning ratio to parameter λXY. We use another
parameter μ to control the learning step length and thus
the final updating function for λXY can be written as:

'
XY XY XYλ λ μ λ= + ⋅ Δ (15)

The learning algorithm is an iterative process, of
which each iteration is comprised of two steps. In the
first step, we fix λXY and update all importance scores si.
In the second step, we fix si and update all λXY. The
iterative process continues until some stop conditions
are satisfied. The algorithm is summarized in Fig. 3.

In Fig. 3, τ is a threshold to control the stop
condition (we empirically set τ= 0.01 in experiments).
Input: A heterogeneous graph G with parameters Λ and a training
data set A
Output: The optimal values of parameters Λ
Algorithm: A pair-wise learning algorithm for adjusting optimal
parameters in a heterogeneous graph
Step 1: //Initialization.
1. Initialize all λXY with average values satisfying equation (1);
2. Initialize all the transition probabilities between nodes using

equation (2);
Step 2: // Iterative updating.
3. Lold← -∞;// initialize old objective function value;
4. do

 // update all λXY;
5. for (each pair (i,j)∈A with ˆij ijy y≠ in the ranking results)

6. update λXY by equation (15);
7. normalize λXY to satisfy equation (1);
8. end for
9. update all si by using equation (10);
10. calculate Lnew by using equation (11);
11. until(| Lnew – Lold | < τ)

Figure 3．The pair-wise learning algorithm

3.2. Recommendation

After calculating the global importance score using
random walk model, we calculate the relevance score
of an object to the query (in search scenario) or to the
extracted key terms (in browsing scenario) and finally
combine them by different recommendation strategies.

Given a query, the relevance score of an object is
calculated by using the language model:

(,) (,) | |(|) (1) ,
| | | | | |

i

i i

t q

tf t o tf t O oP q o
o O o

ω ω ω
υ∈

⎧ ⎫= ⋅ + − ⋅ =⎨ ⎬ +⎩ ⎭
∏ (16)

where q is a query and o is the profile of an object (e.g.,
the profile of a resource can be defined as the
concatenation of its title, description, and content). |o|
is the length of the profile; tf(ti, o) is the term
frequency of term ti in o; |O| is the number of objects
in collection O; tf(ti, O) is the term frequency of term ti
in O; ω is a parameter ranging in [0, 1]; υ is a
smoothing parameter and is commonly set as the
average length of object profile in O. Language model
uses a generating probability to describe the relevance
of an object profile to a query.

Now, we explain our recommendation strategies
based on the above two steps.

3.2.1. Browsing: do recommendation when a person
browses an object. We again classify the scenario into

several sub-scenarios and propose the strategy for each
of them (for each scenario, we use the recommendation
of categories and users as examples):

a) Recommendation of categories and users when
browsing a category. For recommending categories,
firstly, we use the title or tags assigned to the browsing
category as the query q. If a category does not contain
title and tags, we use a keyword extraction tool to
extract key terms from the profile of the category (e.g.,
the concatenation of titles of the resources contained in
the category) as the query q. Secondly, we estimate the
relevance score of other categories by calculating
P(q|c), where c denotes a category. Thirdly, we find all
the users who share the current category, and rank all
their categories by the importance score sc. Finally, we
combine the second step and the third step by linear
interpolating of P(q|c) and sc, and recommend the top
ranked categories. For recommending users, the
strategy is similar. The difference lies in the third step.
We find all users who share the current category, and
then rank them based on su.

b) Recommendation of categories and users when
browsing a user. For recommending categories, firstly,
we find top two ranked categories (by sc) of the
browsing user. Then we use the concatenation of the
title or tags of the two categories as the query. We also
extract key terms if title and tags are not available.
Secondly, we estimate P(q|c) for all the categories.
Thirdly, we find all collaborators (users who share the
same categories) of the browsed user, and then rank all
their categories by sc. Finally, we combine P(q|c) and
sc in the same way as that in a). For recommending
users, the difference lies in the third step. We rank all
the collaborators by su, not their categories.

c) Recommendation of categories and users when
browsing a resource. For recommending categories,
firstly, we use the title, tag, or extracted key terms of
the browsing resource as the query. Secondly, we
estimate P(q|c) for all the categories. Thirdly, we find
the owner of the browsing resource, and rank his/her
categories by sc. Finally, we combine P(q|c) and sc. For
recommending users, the difference lies in the third
step. We rank all the collaborators of the owner by su.

3.2.2. Search: do recommendation when a person
searches objects with a query. We also classify the
scenario into two sub-scenarios:

a) Recommendation of categories and users when
searching categories/resources. In the searching
scenario, we use the searching query q to estimate the
relevance score. For recommending different types of
objects, we first estimate the relevance score of each
user by calculating P(q|u). Secondly, we combine
P(q|u) and su and recommend the top scored users. For

recommending the objects with the same type, i.e.,
categories, we do not calculate the relevance score to
avoid recommending similar objects as those in the
search results. Our strategy then is to get the
recommended users, rank their categories by sc, and
finally recommend the top ranked categories.

b) Recommendation of categories and users when
searching users. For recommending categories, the
strategy is the same as a). For recommending users, we
get the above recommended categories first, then rank
them by su, and finally recommend the top ranked
users.

4. Experiments

We evaluated the proposed method using the data
from two real-world systems, Powazi (www.powazi.com)
and Arnetminer (www.arnetminer.org).

4.1. Experiments on Powazi
4.1.1. DataSet. Powazi system (www.powazi.com) is a
platform on which users can create/collect resources. A
user can create multiple projects (each project can be
viewed as a category) and share his projects with other
users. Each project may contain multiple resources and
tags can be assigned to projects and resources. Besides
a user may search and browse the resources, projects,
users, and tags in the system. Our goal is to
recommend to the person (when she/he conducts
searching or browsing) with different types of objects
(including, users (U), resources (R), projects (P) or
tags (T)) that might interest him/her. The system has
been in operation on an intranet since July, 2007. So
far, we have 132 users, 340 projects, 1403 resources,
and 336 tags. In total, there are 726 project-user
relationships, 881 project-resource relationships, 259
project-tag relationships, 1403 user-resource
relationships, and 336 user-tag relationships. Finally in
the experiment, we did not collect resource-tag and
user-user relationship, thus our random walk algorithm
only considers ten parameters, i.e.,
Λ= {λPT, λPU, λPR, λUP, λUT, λUR, λRP, λRU, λTP, λTU }.

4.1.2. Experiments of recommendation. We
implemented the recommendation strategies for 5
scenarios. The scenarios and strategies are as follows
(cf. section 3.2 for details):

Recommend projects and users when browsing a
project. We define two baselines. The first baseline is
to recommend with only relevant projects by
calculating P(q|p) and relevant users by calculating
P(q|u), (construction of a query q can be referred to
section 3.2). We call this baseline as language model

(shortly LM), as we use language model to calculate
P(q|p) and P(q|u). The second baseline is to
recommend with only important projects by
calculating sp and important users by calculating su, we
call this baseline as random walk (shortly RW). Our
strategy is to recommend with both relevant and
important projects by combining P(q|p) (with the
weight 0.5) and sp (with the weight 0.5) using linear
interpolation, likewise for users (shortly LM+RW).

Recommend projects and users when browsing a
user. We implemented LM, RW, and LM＋RW.

Recommend projects and users when browsing a
resource. We implemented LM, RW, and LM＋RW.

Recommend projects and users when searching
users. For recommending projects, we have
implemented the LM method as baseline and our
strategy LM+RW. For recommending users, we first
get the recommended projects, and then recommend
their owners with the highest importance score. We
call the strategy as LM+RW.

Recommend projects and users when searching
projects. We implemented LM and LM+RW.

To evaluate the performance of our recommendation
strategies, we have manually annotated a ground truth
data. For each search scenario, we first selected 12
most frequent queries from the log of Powazi. Next,
for each query, we collected candidates by pooling the
recommending results of the implemented strategies,
LM, RW, and LM+RW. Then 7 annotators (including
graduates, college faculties, and technical staffs) were
asked to annotate whether or not they are satisfied with
each candidate. Finally, we obtained the ground truth
by majority voting on the 7 answers. For each
browsing scenario, we selected 12 most frequent
browsed objects and annotated the ground truth in the
same way.

We use MRR, P@3, and MAP as the evaluation
measures (See [5] for details). Table 1 shows the
evaluation results. In Table 1, “-” means that there are
less than 3 recommendations for calculating P@3. We
did not implement LM and RW for some search
scenarios (cf. Section 3.2.2 for details). From the
results, we can see LM+RW outperforms LM and RW
in most of the scenarios.

Table 2 shows top three recommended projects in
two specific scenarios. We asked several users for
feedbacks about the results. The feedbacks show that
the users are satisfied with most recommended results.

We compared our strategy LM+RW with the
traditional method by combing LM with PageRank,
which is called LM+PageRank [14] (equal to LM+RW
but with an identical weight for all types of
relationships). In this experiment, we want to show the

advantage of the proposed pair-wise learning algorithm.
Fig. 4 gives the comparison results of P@3 for the 10
recommendations in Table 1. We can see that our
strategy performs better than LM+PageRank in many
recommendations. On several tasks, e.g., SUP and
BRP, the improvements are significant (from 10% to
20%).
Table 1. Performances of recommendations in Powazi (%)

Scenario Recommend Strategy MRR P@3 MAP
Search Scenarios

Projects LM+RW 70.00 61.90 53.94
LM 68.18 83.33 59.21Search Projects Users LM+RW 100.00 66.67 60.69
LM 66.67 41.67 51.34Projects LM+RW 50.00 52.18 68.19Search Users

Users LM+RW 68.18 83.33 59.21
Browsing Scenarios

LM 40.00 - 22.00
RW 60.00 58.33 38.09Projects

LM+RW 80.00 66.67 52.77
LM 100.00 66.67 47.43
RW 100.00 77.78 54.76

Browse a Project

Users
LM+RW 100.00 100.00 95.12

LM 60.00 - 23.33
RW 90.00 73.33 60.86Projects

LM+RW 90.00 73.33 67.31
LM 100.00 - 30.00
RW 90.00 79.12 78.57

Browse a User

Users
LM+RW 76.67 88.89 62.88

LM 60.00 66.67 13.36
RW 58.89 44.44 52.83Projects

LM+RW 100.00 55.56 68.98
LM 50.00 50.00 18.34
RW 60.00 50.00 33.72

Browse a Resource

Users
LM+RW 90.00 75.00 70.80

Table 2. Example recommendations in Powazi

Recommend projects when
searching users using “Java”

Recommend projects when
browsing a project with title

“Information Extraction”
Eclipse TPTP Profiling

Thinking in java 4th semantic calendar
关于 Javascript (about Javascript) Expertise information search

0
20
40
60

80
100

120

SPP SPU SUP SUU BPP BPU BUP BUU BRP BRU
Different Recommendation Scenarios

P@
3

(%
)

LM+PageRank Our Strategy

Figure 4．The effect of assigning heterogeneous weights

Finally, we conducted an additional experiment to
evaluate the performance of the pair-wise learning
algorithm itself. Specifically, for all objects in the
Powazi system (including projects, users, resources,
and tags), we randomly selected 400 pairs, and asked 7
annotators to annotate which one in each pair is more

‘important’ based on his/her preference. We pooled the
results from all annotators and used ‘majority voting’
to obtain the ground truth. We use four-fifth of the
ground truth data as training data for learning the
parameters and test the obtained parameters on a held-
out data set. The final accuracy is 81.8%.

We also compared the results with those obtained by
a manually tuned method. For the manually tuned
method, we range each λ from 0.1 to 0.9 with interval
0.1 and use the parameters setting, which results in the
highest accuracy on the training data as final results.
Thus, the manually tuned results can be viewed as
upper bounds for our method. We also test it on the
same held-out data set. The accuracy is 82%. We can
see that the results obtained by our method are close to
the upper bounds. This confirms the effectiveness of
our method. Table 3 shows the parameters learned by
our method (Shortly, Learn) and the manually tuned
method (Shortly, Tune).
Table 3. The parameters by our pair-wise learning
algorithm and the manually tuned method in Powazi

Method λPT λPU λPR λUP λUT
Learn 0.50 0.12 0.38 0.15 0.10
Tune 0.50 0.10 0.40 0.20 0.10

Method λUR λRP λRU λTP λTU
Learn 0.75 0.69 0.31 0.61 0.39
Tune 0.70 0.80 0.20 0.60 0.40

4.2. Experiments on Arnetminer

We also evaluated our method on ArnetMiner
(www.arnetminer.org) [15], which is an academic
social networking system, containing 448,365
researchers, 880,522 papers, and 4,203 conferences.

In this experiment, the task is to recommend
researchers, papers, and conferences simultaneously
when searching for one types of object, that is,
recommend papers, conferences simultaneously when
searching researchers, likewise for searching papers
and conferences. We selected seven most frequent
queries from the log of ArnetMiner for evaluation
purpose, and annotated the ground truth in the same
way as that in Powazi. We conducted evaluations on a
subset of the data set in ArnetMiner. The data set
contains 853 persons, 10,778 papers, and 222
conferences. We use the citation, authorship, and
paper-publish-at as relationships to create a graph. In
total, we create 15,169 citation relations, 2,122 bi-
directional authorship relationships, and 717 bi-
directional paper-publish-at relationships.

Given a search query q, we recommended each
object by combining relevance score with importance
score (LM+RW). We also compared with LM, which
only considers the relevance score. The results are
given in Table 4. We can see from the table that

LM+RW outperforms LM for most of the
recommendations.

Table 4.The performances of recommendations in
Arnetminer (%)

Recommend Strategy MRR P@3 MAP
LM 47.22 29.63 36.06 Papers LM+RW 49.44 29.63 37.31
LM 68.52 59.26 55.84 Researchers LM+RW 77.78 70.37 67.16
LM 63.89 48.15 46.41 Conferences LM+RW 66.67 51.85 48.13

We give an example when searching using query
“support vector machine” in Table 5. We can see the
results are reasonable, which confirms the
effectiveness of our method for simultaneously
recommending different types of objects.

Table 5.Example recommendations for query “support
vector machine”

Persons Conferences
Vladimir Vapnik NIPS

Olvi L. Mangasarian Machine Learning
Glenn Fung ICML

Papers
Support Vector Regression Machines

Active Support Vector Machine Classification
Supervised clustering with support vector machines

5. Related work

5.1. Recommendation

Content-based filtering [2] recommends items for

users based on correlations between the content of the
items and the user's preferences. This method creates a
profile for each user or item to characterize their nature.

Collaborative filtering [4][6] is a popular approach
for recommendation, which recommends items for
users based on the similarity between users or items.
Model-based approaches use machine learning
methods to train a model off-line that will be used to
predict the ratings for unknown items. Related works
include classification model [3], cluster model[4],
graph model[1], and latent semantic model [9].

Association rules between users and items have
been mined to help recommendation, e.g., [10][12].

Many e-commerce Web sites have utilized the
recommendation function to better sell their products,
e.g., Amazon.com, CDNOW.com, Reel.com, and
eBay.com. Other Web sites like movielens.com,
YouTube.com, and douban.com have also employed
recommendation to attract more users/clicks.

Most of aforementioned approaches and Websites
deal with recommendation of homogeneous objects or
separately deal with different types of objects and only

a few of them consider simultaneously recommending
of heterogeneous objects.

5.2. Random walk

With the large number of Web social networks
becoming available, random walk theory has gained
more and more popularity. Many research efforts have
been made on analysing link structures to better
understand the Web-based networks. PageRank is a
state-of-the-art algorithm proposed by Brin and Page
for estimating the importance of a Web page based on
the other pages pointing to it [14].

Recently, many efforts for enhancing and extending
the algorithm to a special environment have been made.
For instance, Xi et al. [16] propose a unified link
analysis framework called link fusion to consider both
the inter- and intra-type link structure among multi-
type inter-related data objects. Nie et al. [13] propose
an object-level link analysis model, called PopRank, to
rank the objects within a specific domain. Liu et al. [11]
propose building a weighted, directed co-authorship
network in digital libraries, and use an AuthorRank
algorithm to rank authors. See also [7][17].

Most of the previous works focus on homogeneous
graph (that is, the type of objects in the network is
unique, e.g., only Web pages). Some efforts have also
been placed for addressing the heterogeneous graph,
e.g., [13] and [16]. The major difference of our work
from the existing works lies in that we propose a
learning-based random walk model over a
heterogeneous network for the recommendation
context.

6. Conclusion
In this paper, we have investigated the problem of

recommendation over heterogeneous social networks.
We formalize the recommendation as a ranking
problem and propose a random walk model to estimate
the importance of each object in the heterogeneous
network. A pair-wise learning algorithm has been
proposed for learning the weight for each type of
relationship. We categorize the recommendations into
different scenarios and propose corresponding
strategies based on random walking results.
Experimental results on two real-world systems show
that improvements can be obtained by comparing with
several baseline methods.

Acknowledgment
The work is supported by the National Natural

Science Foundation of China (90604025, 60703059),
Chinese National Key Foundation Research and

Development Plan (2007CB310803), and Chinese
Young Faculty Research Funding (20070003093).

References
[1] C. Aggarwal, J. Wolf, K. Wu, and P. Yu. Horting

Hatches an Egg: A New Graph-theoretic Approach to
Collaborative Filtering. In Proc. of KDD’99. pp. 201-
212

[2] M. Balabanovic, Y. Shoham. Content-Based
Collaborative Recommendation. Commun. ACM, Vol.
40(3), 1997.

[3] D. Billsus, M. J. Pazzani. Learning Collaborative
Information Filters. In Proc. of ICML’98. pp. 46-53

[4] J. Breese, D. Heckerman, and C. Kadie. Empirical
Analysis of Predictive Algorithms for Collaborative
Filtering. In Proc. of UAI’98. pp. 43-52

[5] N. Craswell, A. de Vries, and I. Soboroff. Overview of
the Trec-2005 Enterprise Track. In TREC 2005
Conference Notebook. 2005, pp. 199-205

[6] M. Deshpande and G. Karypis. Item-based Top-n
Recommendation Algorithms. ACM Trans. Inf. Syst.,
Vol. 22(1):143-177, 2004.

[7] E. Garfield. Citation Indexing-Its Theory and
Application in Science, Technology, and Humanities.
John Wiley & Sons Inc, 1979.

[8] D. Goldberg, D. Nichols, D. M. Oki, AND D. Terry.
Using Collaborative Filtering to Weave an Information
Tapestry. Commun. ACM, Vol. 35(12):61-70, 1992.

[9] T. Hofmann. Latent Semantic Models for Collaborative
Filtering. ACM Trans. Info. Syst., Vol. 22(1):89-115,
2004.

[10] W. Lin, S. Alvarez, and C. Ruiz. Collaborative
Recommendation Via Adaptive Association Rule
Mining. In Proc. of the Workshop on WEBKDD’00.

[11] X. Liu, J. Bollen, M. L. Nelson, and H. V. d. Sompel.
Co-authorship Networks in the Digital Library
Research Community. Information Processing and
Management: an International Journal, Vol. 41(6):681-
682, 2005.

[12] B. J. Mirza, B. J. Keller, and N. Ramakrishnan.
Studying Recommendation Algorithms by Graph
Analysis. J. Intel. Inf. Syst., Vol. 20(2):131-160, 2003.

[13] Z. Nie, Y. Zhang, J. Wen, and W. Ma. Object-level
Ranking: Bringing Order to Web Objects. In Proc. of
WWW’05. pp. 567-574

[14] L. Page, S. Brin, R. Motwani and T. Winograd. The
PageRank Citation Ranking: Bringing Order to the
Web. Stanford Digital Library working paper SIDL-
WP-1999-0120, Nov.1999.

[15] J. Tang, D. Zhang, and L. Yao. Social Network
Extraction of Academic Researchers. In Proc. of
ICDM’07. pp. 292-301

[16] X W. Xi, B. Zhang, Y. Lu, Z. Chen, S. Yan, H. Zeng,
W.Y. Ma, and E. A. Fox. Link Fusion: A Unified Link
Analysis Framework for Multi-type Interrelated Data
Objects. In Proc. of WWW’04. pp. 319-327

[17] J. Zhang, M. S. Ackerman, and L. Adamic. Expertise
Networks in Online Communities: Structure and
Algorithms. In Proc. of WWW’07. pp. 221-230

