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Abstract 

 
With the Web content having been changed from 

homogeneity to heterogeneity, the recommendation 
becomes a more challenging issue. In this paper, we 
have investigated the recommendation problem on a 
general heterogeneous Web social network. We 
categorize the recommendation needs on it into two 
main scenarios: recommendation when a person is 
doing a search and recommendation when the person 
is browsing the information. We formalize the 
recommendation as a ranking problem over the 
heterogeneous network. Moreover, we propose using a 
random walk model to simultaneously ranking 
different types of objects and propose a pair-wise 
learning algorithm to learn the weight of each type of 
relationship in the model. Experimental results on two 
real-world data sets show that improvements can be 
obtained by comparing with the baseline methods.  

 
1. Introduction 
 

Recommendation is an effective way to reduce the 
cost for finding information and also a powerful way 
to attract customers. It has been widely used in many 
e-commence applications, e.g., Amazon.com, 
CDNOW.com, eBay.com, Reel.com, and so on.  

Recently, many methods have been proposed for 
recommendation, for example, content-based filtering 
[2], collaborative filtering [8], clustering model [4], 
classification model [3], graph model [1], and 
association rule approach [10]. The proposed 
approaches have been applied to the traditional Web 
applications, which usually need recommend only one 
type of information (e.g., Amazon recommends books, 
news.baidu.com recommends news, and 
movielens.com recommends movies). Nowadays, 
social networks consisting of different types of 
information become popular (e.g., a common social 
network indicated by Fig. 1 is composed of users, 

categories, resources, tags, and complex relationships 
between them). The flourish of the heterogeneous 
social networks provides a new environment for 
validating the recommendation methods, at the same 
time brings new challenges, e.g., how to recommend 
the heterogeneous information simultaneously? 

 
Figure 1. A common social network 

In this paper, we intend to conduct a complementary 
study for the recommendation problem in the 
heterogeneous Web social networks. We will mainly 
focus on non-personalized recommendation, as it can 
be extended to the personalized setting by combing the 
user behavior logs and user preference profiles. Hence, 
the major problems addressed here are: 1) How to 
formalize the recommendation problem in a 
heterogeneous Web social network? 2) How to 
determine the strategies for recommending different 
types of objects simultaneously in different scenarios, 
as the requirements for different scenarios might be 
different also? 

Specifically, for a heterogeneous Web social 
network, we categorize the recommendation needs into 
two main scenarios and design corresponding 
strategies: (a) recommendation of different types of 
objects when a person searches for one type of object 
and (b) recommendation of different types of objects 
when the person is browsing one specific object. We 
formalize the recommendation as that of ranking over 
a heterogeneous graph and propose using a random 



walk model for ranking. For specifying the weights of 
different relationships in the random walk model, we 
propose a pair-wise learning algorithm. We conducted 
experiments on two real-world systems: an online 
information sharing system (Powazi, www.powazi.com) 
and an academic social network system (Arnetminer, 
www.arnetminer.org). Both experimental results show 
that the proposed method can outperform the baseline 
methods of using language model and PageRank 
without learning the weights of relationships. 

Advantages of the proposed approach for 
recommendation include: 1) it is not necessary to 
manually specify the weights for different types of 
relationships; 2) the approach can recommend different 
types of objects simultaneously; 3) the approach has 
been empirically verified on two real-world systems.  

The rest of the paper is organized as follows. In 
Section 2, we formalize the recommendation problem 
in a heterogeneous network. In Section 3, we explain 
our approach for recommendation. In Section 4, we 
present our experiments and in Section 5, we review 
the related works. Finally, we conclude the paper. 
 
2. Problem setting 
 

The structure of a Web social network varies largely 
depending on the application itself. This work intends 
to address the recommendation problem in a general 
setting, which thus can be easily extended to deal with 
different specific scenarios. 

The notations used in the paper can be summarized 
as follows. Assume there are n objects with types {C, 
U, R, T}, where C indicates category, U indicates user, 
R indicates resource, and T indicates tag. In particular, 
there are nR resources rk (k=1,...,nR) collected by nU 
users uj (j=1,..., nU ). Moreover, these resources belong 
to nC categories ci (i=1, ... , nC) and are annotated by nT 
tags tl (l=1,…, nT). (Here, a resource can be referred to 
as a Web page, a musical item, or a movie. The notion 
of category and tag is very popular in Web 2.0 
applications.)  

The relationships in “category-user-resource-tag” 
form a directed heterogeneous graph (as shown in Fig. 
2). Specifically, we define the graph as G=(VC∪VU∪

VR∪VT, EUC∪ECU ∪EUR∪ERU∪EUT∪ETU∪EUU∪

ECT∪ETC∪ECR ∪ERC∪ERT∪ETR), where VC is a set 
of categories, VU is a set of users, VR is a set of 
resources, and VT is a set of tags. The relationship 
between a category and a user is recorded in ECU, 
likewise for the others. We consider recommendation 
in a direct graph, thus each undirected edge in the 
graph is represented as two directed edges, i.e. {cj, 
ui}=(cj, ui)∪(ui, cj).  
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Figure 2. A formalized heterogeneous graph 

Further, we define the transition probabilities λ 
between different types of nodes (cf. Fig. 2). The 
transition probability λ has an intuitive explanation. It 
can be viewed as the probability of a user jumps/clicks 
the targeted type of object when she/he is viewing the 
source type of object or it can be viewed as the weight 
of the relationship between two types of objects. 
According to the transition probability theory, we need: 

1,       1,
1,  1 0

UT UC UR UU TR TU TC

CT CU CR RT RU RC XY

λ λ λ λ λ λ λ
λ λ λ λ λ λ λ

+ + + =  +  +  =
+ + = + + =  , > (1) 

In real world social networks, the relationships 
types would be rather complex. The difficulty lies in 
how to define λ for different types of relationships. We 
will describe the problem in Section 3.2. 

Based on the scenario that a person is using the Web, 
the recommendation needs can be classified into two 
main categories:  
1) Browsing: do recommendations when a person is 

browsing one object. The problem is that we need 
to ‘understand’ what the person is interested in 
when she/he is browsing the object. A simple 
method might be finding the similar objects based 
on the content. However, in the Web social 
network, we need also consider the relationships. 
For example, the relationships between users and 
the current browsed resource. 

2) Search: do recommendation of different types of 
objects when a person searches for one type of 
object by a query. Of course, we can simply find 
similar objects of other types based on the content. 
The challenge is still how to make use of the 
relationships between different types of objects. 

 
3. Our approach 

 
Our approach is aimed at dealing with the 

recommendation problems of the two categories. The 
approach mainly consists of three steps: 

1) Global importance estimation. We use a 
random walk model to estimate the global 
important score for each object. The process is 



similar as that in PageRank [14]. The difference 
is that we are addressing a heterogeneous graph 
(with different types of objects) while 
PageRank is concerned with a homogeneous 
graph. We need to consider the weight of 
different types of relationships. 

2) Relevance estimation. We calculate the 
relevance score of each object with the current 
scenario that the person is using the Web. 
When a person is conducting a search, the 
relevance score is calculated based on the query. 
When a user is browsing an object, the 
relevance score is calculated based on the key 
terms extracted from the profile of the object 
(e.g., the profile of a resource can be defined as 
the concatenation of its title, description, and 
content). 

3) Recommendation. We propose several 
strategies for the recommendations under 
different scenarios, which can be viewed as the 
combination of the above two steps. Section 3.2 
will give the details of the strategies. 

For the first step, we formalize the problem in a 
random walk model and propose a pair-wise learning 
algorithm for automatically adjusting the weights of 
different types of relationships. For the second step, we 
employ the language model to estimate the relevance. 
For the third step, we further categorize the two 
recommendation scenarios into several sub problems 
and propose different strategies for each of them. We 
especially focus on the first and the third steps. 

 
3.1. Global importance estimation 

 
This section first formalizes the problem using a 

random walk model and then presents a pair-wise 
learning algorithm to estimate parameters in the model. 

3.1.1. Random walk over a heterogeneous graph. 
Based on the random walk theory, the transition graph 
(cf. Fig. 2) formalizes a random surfer’s behaviour as: 
when a random surfer is at a user node ui, then he/she 
will have λUT probability to browse (also called “jump 
to”) tags used or created by the current user, or have 
λUC probability to browse related categories, or have 
λUR probability to browse related resources, or have 
λUU probability to browse the friends of the current user.  

We consider random walk over the heterogeneous 
graph by transforming the entire network into a 
transition matrix, denoted as M. Each element mij is 
denoted as a probability walking from node i to node j. 
For example, let node i be ui∈VU and  node j be rj∈VR:   

1
_ ( )i ju r

i R

m
Out Degree u V

=
→

 (2) 

where Out_Degree(ui→VR) is the number of directed 
edges from ui to nodes in VR (in essence, indicates the 
number of resources that user ui is collected). Similarly, 
we can easily define all the transition probabilities 
between different types of nodes in the network.  

In addition, we need consider λ. The intuition is that 
when a random surfer is at node i with type X, she/he 
has a probability of λXY to jump to node set with type Y 
and then has a probability of λXY*mij to jump to a 
particular node j with type Y. Thus the transition 
probability from ui to rj can be defined as:  

( | )
i jj i UR u rP r u mλ=  (3)

DEFINITION 1. The importance score vector is a 
stationary distribution of the matrix M: 

,= = Ts As A M  (4)
Furthermore, similar to PageRank, we introduce a 

random jump parameter α, which allows the random 
surfer to randomly jump to all the other nodes: 

' (1 ) , (1/ ,...,1. ) (1,...,1)n nα α= − + = TM M E E  (5)
where n is the total number of nodes in the network, i.e. 
n=|VU|+|VC|+|VR|+|VT|. Given this, we can easily use the 
iterative method to find the scores for each node type: 

(1 )

( )
U

CU CU C RU RU R TU TU T UU UU U

α α
λ λ λ λ

= + −

× + + +T T Τ Τ

s E

M s M s M s M s
(6)

(1 ) ( )C UC UC U RC RC R TC TC Tα α λ λ λ= × + − × + +T T Ts E M s M s M s (7)
(1 ) ( )T CT CT C UT UT U RT RT Rα α λ λ λ= × + − × + +T T Ts E M s M s M s (8)
(1 ) ( )R CR CR C UR UR U TR TR Tα α λ λ λ= × + − × + +T T Ts E M s M s M s (9)

where, sU is the vector of scores for all users, likewise 
for sC, sR, and sT; MCU, MRU, MTU, and MUU 
respectively represent the transition probabilities from 
categories to users, from resources to users, from tags 
to users, and from users to users.  

We can simplify (6)-(9) formulas in a general form: 
(1 )

XY

Y XY XY X
λ

α α λ
∈Λ

= × + − × ∑ Ts E M s  (10)

where X and Y are any node types, sX and sY are the 
rank vectors for type X and Y, λXY is the transition 
probability from type X to type Y, Λ is the set of λXY, 
and MXY is the transition matrix corresponding with the 
relationship type XY.  

Now, for performing the random walk on the 
heterogeneous graph, we need quantify the value of 
each λXY. Previously, the values are often assigned by 
manual or empirically, e.g., [16]. Several approaches 
have been proposed for learning the parameters 
automatically, e.g., a list-wise method [13]. In this 
paper, we propose a pair-wise learning algorithm. 

3.1.2. A pair-wise learning algorithm for 
parameters learning. The heterogeneous graph may 
have many parameters λXY. We can see from Fig. 2, 
there is a set of parameter Λ= {λCT, λCU, λCR, λUC, λUT, 



λUR, λUU, λRC, λRU, λRT, λTC, λTU, λTR }. Actually, in a real 
world system, the objects and the relationships would 
be rather complex. It would be highly infeasible to 
assign them manually. The other simple way is to 
averagely specify the values for all the parameters, 
thus, the random walk on the heterogeneous graph is 
decayed as a random walk on a homogeneous graph by 
viewing all the objects with the same type, which is the 
same as the PageRank on the traditional Web. 
However, we argue that the weight of each type of 
relationship should not be treated equally. For example, 
when a random surfer stays at a user node, she/he may 
jump to the user’s collected resources with higher 
probability than the tags that the user used. The setting 
of the parameters might be critical to the final 
recommendation results. Actually, this is also a general 
problem for ranking in the Web 2.0 applications. 

The main idea of the proposed algorithm is: given a 
training data set, we aim at finding a ranking function 
with parameters that can best fit the training data. 

The training data is denoted as a set A = {(i, j)}, 
where, for each component, i and j are the selected pair 
of objects of the same type with the importance score 
of i larger than j. Our objective then is to make the 
importance score pairs estimated by our random walk 
algorithm identical with those in the training data. 
Thus, the objective function is defined as: 

( , )
ˆmax  

. .  1,
1,    1,
1,   0

ij iji j A

UT UC UR UU

TR TU TC CT CU CR

RT RU RC XY

L y y

s t λ λ λ λ
λ λ λ λ λ λ
λ λ λ λ

∈
=

  + + + =
 +  +  = + + =
+ + = >

∑
(11)

where yij is an indicator function ( ˆijy  is the true value 
of training data, yij is the estimated value by the 
random walk algorithm): 

1, 0

1, 0
i j

ij
i j

s s
y

s s

   − ≥⎧⎪= ⎨− − <⎪⎩
 (12)

For each node i, its importance score si is estimated 
by equation (10). si-sj is the difference between two 
importance score, which can by caculated by:  

( ) ( )

(1 ) ( )
XY

i j XY ki k kj k
type ki XY type kj XY

s s m s m s
λ

α λ
∈Λ = =

− = − −∑ ∑ ∑ (13)

We put the equations (12) and (13) into equation 
(11) and set the derivative function equal to zero:  

( , ) ( ) ( )
ˆ

ˆ: (1 )( )

ij ij

XY ij ki k kj k
i j A type ki XY type kj XYXY

y y

L y m s m sλ α
λ ∈ = =

∩ ≠

∂ Δ = − −∑ ∑ ∑ (14)

The derivative function can be viewed as the 
learning ratio to parameter λXY. We use another 
parameter μ to control the learning step length and thus 
the final updating function for λXY can be written as: 

'
XY XY XYλ λ μ λ= + ⋅ Δ  (15)

The learning algorithm is an iterative process, of 
which each iteration is comprised of two steps. In the 
first step, we fix λXY and update all importance scores si. 
In the second step, we fix si and update all λXY. The 
iterative process continues until some stop conditions 
are satisfied. The algorithm is summarized in Fig. 3. 

In Fig. 3, τ is a threshold to control the stop 
condition (we empirically set τ= 0.01 in experiments). 
Input: A heterogeneous graph G with parameters Λ and a training 
data set A 
Output: The optimal values of parameters Λ 
Algorithm: A pair-wise learning algorithm for adjusting optimal 
parameters in a heterogeneous graph 
Step 1: //Initialization. 
1. Initialize all λXY with average values satisfying equation (1); 
2. Initialize all the transition probabilities between nodes using 

equation (2); 
Step 2: // Iterative updating. 
3. Lold← -∞;// initialize old objective function value; 
4. do 

           // update all λXY; 
5.      for (each pair (i,j)∈A with ˆij ijy y≠  in the ranking results)

6.           update λXY by equation (15); 
7.           normalize λXY  to satisfy equation (1); 
8.      end for 
9.      update all si by using equation (10); 
10.      calculate Lnew by using equation (11); 
11.  until(| Lnew – Lold | < τ) 

Figure 3．The pair-wise learning algorithm 

3.2. Recommendation  

After calculating the global importance score using 
random walk model, we calculate the relevance score 
of an object to the query (in search scenario) or to the 
extracted key terms (in browsing scenario) and finally 
combine them by different recommendation strategies. 

Given a query, the relevance score of an object is 
calculated by using the language model: 

( , ) ( , ) | |( | ) (1 ) ,
| | | | | |

i

i i

t q

tf t o tf t O oP q o
o O o

ω ω ω
υ∈

⎧ ⎫= ⋅ + − ⋅ =⎨ ⎬ +⎩ ⎭
∏ (16)

where q is a query and o is the profile of an object (e.g., 
the profile of a resource can be defined as the 
concatenation of its title, description, and  content). |o| 
is the length of the profile; tf(ti, o) is the term 
frequency of term ti in o; |O| is the number of objects 
in collection O; tf(ti, O) is the term frequency of term ti 
in O; ω is a parameter ranging in [0, 1]; υ is a 
smoothing parameter and is commonly set as the 
average length of object profile in O. Language model 
uses a generating probability to describe the relevance 
of an object profile to a query. 

Now, we explain our recommendation strategies 
based on the above two steps.  

3.2.1. Browsing: do recommendation when a person 
browses an object. We again classify the scenario into 



several sub-scenarios and propose the strategy for each 
of them (for each scenario, we use the recommendation 
of categories and users as examples): 

a) Recommendation of categories and users when 
browsing a category. For recommending categories, 
firstly, we use the title or tags assigned to the browsing 
category as the query q. If a category does not contain 
title and tags, we use a keyword extraction tool to 
extract key terms from the profile of the category (e.g., 
the concatenation of titles of the resources contained in 
the category) as the query q. Secondly, we estimate the 
relevance score of other categories by calculating 
P(q|c), where c denotes a category. Thirdly, we find all 
the users who share the current category, and rank all 
their categories by the importance score sc. Finally, we 
combine the second step and the third step by linear 
interpolating of P(q|c) and sc, and recommend the top 
ranked categories. For recommending users, the 
strategy is similar. The difference lies in the third step. 
We find all users who share the current category, and 
then rank them based on su. 

b) Recommendation of categories and users when 
browsing a user. For recommending categories, firstly, 
we find top two ranked categories (by sc) of the 
browsing user. Then we use the concatenation of the 
title or tags of the two categories as the query. We also 
extract key terms if title and tags are not available. 
Secondly, we estimate P(q|c) for all the categories. 
Thirdly, we find all collaborators (users who share the 
same categories) of the browsed user, and then rank all 
their categories by sc. Finally, we combine P(q|c) and 
sc in the same way as that in a). For recommending 
users, the difference lies in the third step. We rank all 
the collaborators by su, not their categories. 

c) Recommendation of categories and users when 
browsing a resource. For recommending categories, 
firstly, we use the title, tag, or extracted key terms of 
the browsing resource as the query. Secondly, we 
estimate P(q|c) for all the categories. Thirdly, we find 
the owner of the browsing resource, and rank his/her 
categories by sc. Finally, we combine P(q|c) and sc. For 
recommending users, the difference lies in the third 
step. We rank all the collaborators of the owner by su.  

3.2.2. Search: do recommendation when a person 
searches objects with a query. We also classify the 
scenario into two sub-scenarios: 

a) Recommendation of categories and users when 
searching categories/resources. In the searching 
scenario, we use the searching query q to estimate the 
relevance score. For recommending different types of 
objects, we first estimate the relevance score of each 
user by calculating P(q|u). Secondly, we combine 
P(q|u) and su and recommend the top scored users.  For 

recommending the objects with the same type, i.e., 
categories, we do not calculate the relevance score to 
avoid recommending similar objects as those in the 
search results. Our strategy then is to get the 
recommended users, rank their categories by sc, and 
finally recommend the top ranked  categories. 

b) Recommendation of categories and users when 
searching users. For recommending categories, the 
strategy is the same as a). For recommending users, we 
get the above recommended categories first, then rank 
them by su, and finally recommend the top ranked 
users. 
 
4. Experiments 
 

We evaluated the proposed method using the data 
from two real-world systems, Powazi (www.powazi.com) 
and Arnetminer (www.arnetminer.org).  

 
4.1. Experiments on Powazi 
4.1.1. DataSet. Powazi system (www.powazi.com) is a 
platform on which users can create/collect resources. A 
user can create multiple projects (each project can be 
viewed as a category) and share his projects with other 
users. Each project may contain multiple resources and 
tags can be assigned to projects and resources. Besides 
a user may search and browse the resources, projects, 
users, and tags in the system. Our goal is to 
recommend to the person (when she/he conducts 
searching or browsing) with different types of objects 
(including, users (U), resources (R), projects (P) or 
tags (T)) that might interest him/her. The system has 
been in operation on an intranet since July, 2007. So 
far, we have 132 users, 340 projects, 1403 resources, 
and 336 tags. In total, there are 726 project-user 
relationships, 881 project-resource relationships, 259 
project-tag relationships, 1403 user-resource 
relationships, and 336 user-tag relationships. Finally in 
the experiment, we did not collect resource-tag and 
user-user relationship, thus our random walk algorithm 
only considers ten parameters, i.e.,  
Λ= {λPT, λPU, λPR, λUP, λUT, λUR, λRP, λRU, λTP, λTU }. 

4.1.2. Experiments of recommendation. We 
implemented the recommendation strategies for 5 
scenarios. The scenarios and strategies are as follows 
(cf. section 3.2 for details): 

Recommend projects and users when browsing a 
project. We define two baselines. The first baseline is 
to recommend with only relevant projects by 
calculating P(q|p) and relevant users by calculating 
P(q|u), (construction of a query q can be referred to 
section 3.2). We call this baseline as language model 



(shortly LM), as we use language model to calculate 
P(q|p) and P(q|u). The second baseline is to 
recommend with only important projects by 
calculating sp and important users by calculating su, we 
call this baseline as random walk (shortly RW). Our 
strategy is to recommend with both relevant and 
important projects by combining P(q|p) (with the 
weight 0.5) and sp (with the weight 0.5) using linear 
interpolation, likewise for users (shortly LM+RW).  

Recommend projects and users when browsing a 
user. We implemented LM, RW, and LM＋RW. 

Recommend projects and users when browsing a 
resource. We implemented LM, RW, and LM＋RW. 

Recommend projects and users when searching 
users. For recommending projects, we have 
implemented the LM method as baseline and our 
strategy LM+RW. For recommending users, we first 
get the recommended projects, and then recommend 
their owners with the highest importance score. We 
call the strategy as LM+RW. 

Recommend projects and users when searching 
projects. We implemented LM and LM+RW. 

To evaluate the performance of our recommendation 
strategies, we have manually annotated a ground truth 
data. For each search scenario, we first selected 12 
most frequent queries from the log of Powazi. Next, 
for each query, we collected candidates by pooling the 
recommending results of the implemented strategies, 
LM, RW, and LM+RW. Then 7 annotators (including 
graduates, college faculties, and technical staffs) were 
asked to annotate whether or not they are satisfied with 
each candidate. Finally, we obtained the ground truth 
by majority voting on the 7 answers. For each 
browsing scenario, we selected 12 most frequent 
browsed objects and annotated the ground truth in the 
same way.  

We use MRR, P@3, and MAP as the evaluation 
measures (See [5] for details). Table 1 shows the 
evaluation results. In Table 1, “-” means that there are 
less than 3 recommendations for calculating P@3. We 
did not implement LM and RW for some search 
scenarios (cf. Section 3.2.2 for details). From the 
results, we can see LM+RW outperforms LM and RW 
in most of the scenarios. 

Table 2 shows top three recommended projects in 
two specific scenarios. We asked several users for 
feedbacks about the results. The feedbacks show that 
the users are satisfied with most recommended results.  

We compared our strategy LM+RW with the 
traditional method by combing LM with PageRank, 
which is called LM+PageRank [14] (equal to LM+RW 
but with an identical weight for all types of 
relationships). In this experiment, we want to show the 

advantage of the proposed pair-wise learning algorithm. 
Fig. 4 gives the comparison results of P@3 for the 10 
recommendations in Table 1. We can see that our 
strategy performs better than LM+PageRank in many 
recommendations. On several tasks, e.g., SUP and 
BRP, the improvements are significant (from 10% to 
20%). 
Table 1. Performances of recommendations in Powazi (%) 

Scenario Recommend Strategy MRR P@3 MAP
Search Scenarios 

Projects LM+RW 70.00 61.90 53.94
LM 68.18 83.33 59.21Search Projects Users  LM+RW 100.00 66.67 60.69
LM 66.67 41.67 51.34Projects LM+RW 50.00 52.18 68.19Search Users 

Users LM+RW 68.18 83.33 59.21
Browsing Scenarios 

LM 40.00 - 22.00
RW 60.00 58.33 38.09Projects 

LM+RW 80.00 66.67 52.77
LM 100.00 66.67 47.43
RW 100.00 77.78 54.76

Browse a Project

Users 
LM+RW 100.00 100.00 95.12

LM 60.00 - 23.33
RW 90.00 73.33 60.86Projects 

LM+RW 90.00 73.33 67.31
LM 100.00 - 30.00
RW 90.00 79.12 78.57

Browse a User 

Users 
LM+RW 76.67 88.89 62.88

LM 60.00 66.67 13.36
RW 58.89 44.44 52.83Projects 

LM+RW 100.00 55.56 68.98
LM 50.00 50.00 18.34
RW 60.00 50.00 33.72

Browse a Resource

Users 
LM+RW 90.00 75.00 70.80

Table 2. Example recommendations in Powazi 

Recommend projects when 
searching users using “Java”

Recommend projects when 
browsing a project with title 

“Information Extraction” 
Eclipse TPTP Profiling 

Thinking in java 4th semantic calendar 
关于 Javascript (about Javascript) Expertise information search 
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Figure 4．The effect of assigning heterogeneous weights  

Finally, we conducted an additional experiment to 
evaluate the performance of the pair-wise learning 
algorithm itself. Specifically, for all objects in the 
Powazi system (including projects, users, resources, 
and tags), we randomly selected 400 pairs, and asked 7 
annotators to annotate which one in each pair is more 



‘important’ based on his/her preference. We pooled the 
results from all annotators and used ‘majority voting’ 
to obtain the ground truth. We use four-fifth of the 
ground truth data as training data for learning the 
parameters and test the obtained parameters on a held-
out data set. The final accuracy is 81.8%.  

We also compared the results with those obtained by 
a manually tuned method. For the manually tuned 
method, we range each λ from 0.1 to 0.9 with interval 
0.1 and use the parameters setting, which results in the 
highest accuracy on the training data as final results. 
Thus, the manually tuned results can be viewed as 
upper bounds for our method. We also test it on the 
same held-out data set. The accuracy is 82%. We can 
see that the results obtained by our method are close to 
the upper bounds. This confirms the effectiveness of 
our method. Table 3 shows the parameters learned by 
our method (Shortly, Learn) and the manually tuned 
method (Shortly, Tune).  
Table 3. The parameters by our pair-wise learning 
algorithm and the manually tuned method in Powazi 

Method λPT λPU λPR λUP λUT 
Learn 0.50 0.12 0.38 0.15 0.10 
Tune 0.50 0.10 0.40 0.20 0.10 

Method λUR λRP λRU λTP λTU 
Learn 0.75 0.69 0.31 0.61 0.39 
Tune 0.70 0.80 0.20 0.60 0.40 

 
4.2. Experiments on Arnetminer 

We also evaluated our method on ArnetMiner 
(www.arnetminer.org) [15], which is an academic 
social networking system, containing 448,365 
researchers, 880,522 papers, and 4,203 conferences.  

In this experiment, the task is to recommend 
researchers, papers, and conferences simultaneously 
when searching for one types of object, that is, 
recommend papers, conferences simultaneously when 
searching researchers, likewise for searching papers 
and conferences. We selected seven most frequent 
queries from the log of ArnetMiner for evaluation 
purpose, and annotated the ground truth in the same 
way as that in Powazi. We conducted evaluations on a 
subset of the data set in ArnetMiner. The data set 
contains 853 persons, 10,778 papers, and 222 
conferences. We use the citation, authorship, and 
paper-publish-at as relationships to create a graph. In 
total, we create 15,169 citation relations, 2,122 bi-
directional authorship relationships, and 717 bi-
directional paper-publish-at relationships.  

Given a search query q, we recommended each 
object by combining relevance score with importance 
score (LM+RW). We also compared with LM, which 
only considers the relevance score. The results are 
given in Table 4. We can see from the table that 

LM+RW outperforms LM for most of the 
recommendations. 

Table 4.The performances of recommendations in 
Arnetminer (%) 

Recommend Strategy MRR P@3 MAP 
LM 47.22 29.63 36.06 Papers LM+RW 49.44 29.63 37.31 
LM 68.52 59.26 55.84 Researchers LM+RW 77.78 70.37 67.16 
LM 63.89 48.15 46.41 Conferences LM+RW 66.67 51.85 48.13 

We give an example  when searching using query 
“support vector machine” in Table 5. We can see the 
results are reasonable, which confirms the 
effectiveness of our method for simultaneously 
recommending different types of objects. 

Table 5.Example recommendations for query “support 
vector machine” 

Persons Conferences 
Vladimir Vapnik NIPS 

Olvi L. Mangasarian Machine Learning 
Glenn Fung ICML 

Papers 
Support Vector Regression Machines 

Active Support Vector Machine Classification 
Supervised clustering with support vector machines 

 
5. Related work 
 
5.1. Recommendation 

 
Content-based filtering [2] recommends items for 

users based on correlations between the content of the 
items and the user's preferences. This method creates a 
profile for each user or item to characterize their nature.  

Collaborative filtering [4][6] is a popular approach 
for recommendation, which recommends items for 
users based on the similarity between users or items. 
Model-based approaches use machine learning 
methods to train a model off-line that will be used to 
predict the ratings for unknown items. Related works 
include classification model [3], cluster model[4], 
graph model[1], and latent semantic model [9].  

Association rules between users and items have 
been mined to help recommendation, e.g., [10][12]. 

Many e-commerce Web sites have utilized the 
recommendation function to better sell their products, 
e.g., Amazon.com, CDNOW.com, Reel.com, and 
eBay.com. Other Web sites like movielens.com, 
YouTube.com, and douban.com have also employed 
recommendation to attract more users/clicks.  

Most of aforementioned approaches and Websites 
deal with recommendation of homogeneous objects or 
separately deal with different types of objects and only 



a few of them consider simultaneously recommending 
of heterogeneous objects. 

 
5.2. Random walk 
 

With the large number of Web social networks 
becoming available, random walk theory has gained 
more and more popularity. Many research efforts have 
been made on analysing link structures to better 
understand the Web-based networks. PageRank is a 
state-of-the-art algorithm proposed by Brin and Page 
for estimating the importance of a Web page based on 
the other pages pointing to it [14].  

Recently, many efforts for enhancing and extending 
the algorithm to a special environment have been made. 
For instance, Xi et al. [16] propose a unified link 
analysis framework called link fusion to consider both 
the inter- and intra-type link structure among multi-
type inter-related data objects. Nie et al. [13] propose 
an object-level link analysis model, called PopRank, to 
rank the objects within a specific domain. Liu et al. [11] 
propose building a weighted, directed co-authorship 
network in digital libraries, and use an AuthorRank 
algorithm to rank authors. See also [7][17].  

Most of the previous works focus on homogeneous 
graph (that is, the type of objects in the network is 
unique, e.g., only Web pages). Some efforts have also 
been placed for addressing the heterogeneous graph, 
e.g., [13] and [16]. The major difference of our work 
from the existing works lies in that we propose a 
learning-based random walk model over a 
heterogeneous network for the recommendation 
context. 

6. Conclusion 
In this paper, we have investigated the problem of 

recommendation over heterogeneous social networks. 
We formalize the recommendation as a ranking 
problem and propose a random walk model to estimate 
the importance of each object in the heterogeneous 
network. A pair-wise learning algorithm has been 
proposed for learning the weight for each type of 
relationship. We categorize the recommendations into 
different scenarios and propose corresponding 
strategies based on random walking results. 
Experimental results on two real-world systems show 
that improvements can be obtained by comparing with 
several baseline methods. 
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