
Name Disambiguation Using Atomic Clusters

Feng Wang, Juanzi Li, Jie Tang, Jing Zhang, and Kehong Wang

Department of Computer Science and Technology, Tsinghua University

East Main Building Room 10-201,Tsinghua University, Beijing

 100084, China

{wangfeng,ljz,tangjie,zhangjing,wkh}@keg.cs.tsinghua.edu.cn

Abstract
Name ambiguity is a critical problem in many

applications, in particular in the online bibliography

systems, such as DBLP and CiteSeer. Previously,

several clustering based methods have been proposed

although, the problem still presents to be a big

challenge for both research and industry communities.

In this paper, we present a complementary study to the

problem from another point of view. We propose an

approach of finding atomic clusters to improve the

performance of existing clustering-based methods. We

conducted experiments on a dataset from a real-world

system: Arnetminer.org. Experiments results show that

significant improvements can be obtained by using the

proposed atomic clusters finding approach (about

+8% and +27% improvements depending on different

clustering methods).

1. Introduction
Name ambiguity is a real-world problem that one

name possibly refers to more than one actual persons.

It is a critical problem in many applications, such as:

expert finding, people connection finding, and

information integration.

Specifically, in scientific bibliography systems, the

name disambiguation problem can be formalized as:

given a list of publications with all sharing an identical

author name but might actually referring to different

persons, the task then is to assign the publications to

some different clusters, each of which contains

publications written by the same person.

By viewing all publications as vectors of multiple

dimensions and each publication as a point in the

multiple-dimensional space, we can obtain a

straightforward solution by using clustering methods to

deal with this problem. Unfortunately, such simple

solution seems not work well on this task. Our

experiments also confirm this (cf. Section 6). The

reason might be that publication data in the multiple-

dimensional space are quite sparse and thus it is hard to

find the correct centres of clusters and further hard to

cluster each publication correctly.

Several research efforts have been placed to the

problem. For example, [11] defines three types of

features and applies a K-way spectral clustering

algorithm for name disambiguation. [30] proposes an

approach called DISTINCT by combining two

similarity measures: set resemble of neighbor tuples

and random walk probability. [31] proposes a semi-

supervised framework to the problem based on hidden

Markov random fields. We consider this problem from

another angle. Our basic idea is to find the atomic

clusters and then use the atomic finding results to help

improve the traditional clustering algorithms. The

atomic cluster means that publications in the same

atomic cluster must be correctly grouped (high

precision) but might be further grouped in the process

of clustering (possible low recall). Intuition behind this

idea is that we can use atomic cluster finding results to

ease the problem, so as to improve the performance of

clustering methods for name disambiguation.

Therefore, questions arising here include: 1) how to

accurately find the atomic clusters, as it will be critical

to the following clustering process? 2) how to combine

the found atomic clusters into the traditional clustering

algorithms?

In this paper, we first present the concept of atomic

cluster. We propose using a bias classification method

for finding the atomic clusters for a disambiguation

problem. Features were defined for the classifier.

Moreover, we examine the contributions of different

kinds of features in training the classifier. Then, we

describe how to integrate the atomic clusters finding

results into the traditional algorithms. Specifically, we

integrate the atomic clusters into two state-of-the-art

clustering algorithms: Hierarchical clustering and K-

means. We have found that those clustering methods

can benefit a lot from our method.

We applied the obtained disambiguation process,

consisting of atomic clusters finding and combination

of the finding results into existing clustering

algorithms, to a dataset collected from Arnetminer.org.

The data set contains 1,250 publications of 16 different

author names in total. Our experiment results show that

using atomic clusters can significantly improve the

performance of disambiguation by Hierarchical

clustering and K-means clustering (about 8% and 27%

in terms of F1-measure respectively).

Our contributions in this paper include: 1) proposal

of an atomic cluster finding method; 2) combination of

the atomic cluster method into the traditional clustering

algorithms; and 3) empirically verification of the

proposed methods.

The rest of this paper is organized as follow:

Section 2 reviews the related work. Section 3 describes

the overview of our approach of using atomic clusters

to improve the performances of two kinds of basic

clustering methods. Section 4 proposes our method for

finding atomic clusters. Section 5 presents two

implementations of name disambiguation based on the

atomic cluster finding results. Experimental results are

presented in section 6. Finally, we conclude the paper

in section 7.

2. Related work
Several approaches have been proposed for name

disambiguation in different domains, for example,

disambiguation on Citations [10] [11] [26] [30], Web

Pages [1] [21], Email data [22], Internet Movie

Database [19] and so on.

[11] proposed an unsupervised learning approach

using K-way spectral clustering method. They studied

two types of feature weight, the usual “TFIDF” and the

normalized “TF” (“NTF”). Then, they calculate a

Gram matrix for each name dataset and apply K way

spectral clustering algorithm to the Gram matrix to get

the result. In [26], a search engine based clustering

method is proposed. They represent the features of

each citation as relevant URLs from search engine and

weighted it by its IHFs. Then they compute the pair

wise similarity of two citations using cosine similarity

and perform a hierarchical agglomerative clustering to

derive the final clusters.

Two supervised methods are proposed in [10]. This

paper investigates two supervised learning approaches

to disambiguate authors in the citations. One approach

uses the Naive Bayes probability model, a generative

model to capture all authors’ writing patterns using

only positive training citations; the other uses Support

Vector Machines(SVMs) and the vector space

representation of citations, a discriminative model

learning from both positive and negative training

citations the distinction between different authors’

citations. Therefore, when there is a new citation, both

two models will predict whether it belongs to a certain

author. However, one drawback of supervised methods

is its scalability when using features like this. It is also

impractical to train thousands of models for all

individuals in a large Digital Library. See also [6].

[31] proposes a constraint-based probabilistic model

for semi-supervised name disambiguation. They

formalize the name disambiguation problem in a

constraint based probabilistic framework using Hidden

Markov Random Fields. Then define six types of

constraints and employ EM algorithm to learn different

distance metric for different persons.

Some other methods have also been proposed based

on graphical theory. For example, Chen et al. [4]

propose a graphical approach for entity resolution.

They construct and analyze the entity-relationship

graph constructed for the dataset and propose a method

to measures the degree of interconnectedness between

nodes in the graph, which is verified to be effective to

improve the quality of entity resolution. Yin et al. [30]

propose an approach called DISTINCT by combining

two similarity measures: set resemble of neighbor

tuples and random walk probability. They propose a

method to weight different types of links in the graph.

[24] adapt the multi-level graph partition technique to

solve the large-scale name disambiguation problem.

On the other dataset, [1] tries to distinguish web

pages to different individuals with the same name. It

extends the problem from one person to a group of

people who are related to each other, and identifies all

their Web presence simultaneously. They present two

unsupervised frameworks: one was based on link

structure of the Web pages; the other used

Agglomerative/Conglomerative Double Clustering

method. [22] solves the name disambiguation problem

in email data. They extend similarity metrics for emails

embedded in graphs via a lazy graph walk. The re-

ranking schemes based on the graph-walk similarity

measures are demonstrated to work well. In [19], they

propose a method which employs a less strict similarity

measures by using random walks between ambiguous

observations on a global social network. This similarity

can provide more robust disambiguation capability

rather than exact one.

3. Our approach overview
In this section, we first give an overview of our

approach and then introduce the details of each step in

the approach.

Our preliminary experiments and analysis show that

one difficulty in name disambiguation is that data

points (publications) are quite sparse in the feature

space. Some publications might be located far away

from the target cluster centres, which makes it difficult

to obtain good performance by directly using the

tradition clustering methods. By further analyzing the

data, we have found that there are strong relationships

between some points. For example, two papers have

the same co-author and were published at the same

conference. If such kind of points can get together as

atomic clusters, they will feed the clustering algorithm

a better initial condition. By the atomic cluster, we

mean a cluster of publications that have strong

relationships/similarity with each other and will not be

split in the following clustering process. Based on this

observation, we propose an approach of atomic cluster

finding for name disambiguation.

Fig. 1 Processing flow in our disambiguation approach.
(a) Original Points (b) Atomic Clusters (c) Disambiguation

results
Note: each point represents a publication.

Fig. 1 shows the processing flow of our approach for

name disambiguation. The process consists of two

steps: atomic cluster finding and disambiguation.

In the first step, we intend to find publications which

have ‘strong’ relationships/similarities (which can be

shown from (a) to (b) in Fig. 1). We output the

strongly related points as atomic clusters for the later

processing. To determine how strongly two

publications are related to each other, we utilize a bias

classification based method.

In the second step, we perform the disambiguation

based on the atomic cluster finding results (as shown

from (b) to (c) in Fig. 1). We take atomic clusters as

the input for a clustering algorithm (e.g., Hierarchical

clustering or K-means clustering) and output the final

clustering results as the disambiguation results.

4. Atomic cluster finding
In this step, the main purpose is to use some

features which contain information that can strongly

indicates whether the publications are written by the

same person. In our approach, we use a supervised

classifier to generate the atomic clusters. The algorithm

used in this step is described in Algorithm 1.

The input of the algorithm is a list of publications

having the author name we are going to disambiguate.

We sort all publications by their publish year (for the

publications which publish in the same year, we simply

use the alphabetical order), and then feed them to the

algorithm one by one. The key in the algorithm is that

a bias-classifier is used to determine if a publication

should be grouped into an existing atomic cluster or a

new cluster. We call it bias-classifier because we want

to have a classifier that has high precision, which

means that if a publication is assigned to cluster cj, it

must be highly possibly correct. Otherwise, we prefer

to create a new cluster. In this way, we can have a high

probability to keep the atomicity for each cluster.

Algorithm I. Algorithm of atomic cluster generation

Input:

A list of publications which all share same author name

Output:

A list of atomic clusters

Initialization:

Sort the publications by the order of increment of their

publisher year. Create an empty atomic cluster list c={Ø}.

Iteration:

1. For each publication pi, in {p1, p2, …, pm}

2. For each cluster cj in the atomic cluster list c

 //use a classifier to predict if paper pi should be grouped

into cj.

3. If Bias-Classifier(pi, cj)>0 then

4. assign the publication into the cluster cj;

5. End If

6. End For

7. If no cluster assigned with publication pi;

8. create a new cluster ck with pi and add ck to the list c;

9. End If

10. End For

The intuition behind the algorithm stems from

observations on how human beings disambiguate

publications: (1) people would like to start from the

first published paper, when there is no ambiguity

problem because there is only one paper; (2) by going

on checking more published papers, people always

would like to adapt the “easy first” and “high-

confidence first” strategy, that is people first cluster the

papers that she/he has high confidence with; (3) for the

rest papers that might be somehow difficult, people

would adapt some compromising method. Our

algorithm matches with the three points above. We sort

the papers by their published year (1), find atomic

clusters (2), and employ traditional clustering

algorithm to find the final disambiguation results (3).

Correspondingly, we see that the bias-classifier here

play a role as a human being finds the paper clusters of

“high-confidence”. The classification based method

consists of two stages: training and prediction. We use

human labeled data to train a bias-classifier and use the

classifier for the later prediction.

4.1. Bias classifier
The difference in the classifier from conventional

classification problem is that we view a pair of paper-

cluster (p, c) as an instance. Features are defined based

on relationships of each pair. If the prediction result for

a pair by the classifier is positive, we say that the paper

should be grouped into the atomic cluster c.

As the classifier, we use AdaboostM1 [8] [9] with

several adaptations. In our system, we adapt a variation

of AdaBoost as a bias classifier, in that we want to find

atomic clusters with high precision (but not necessary

high recall). Specifically, in the learning algorithm,

each weak classifier is defined as a single layer

perceptron. (We selected perceptron due to its easy

implementation and that its precision and recall can be

easily balanced.) AdaBoost minimizes a quantity

related to the classification error. In our setting, we

want to minimize the number of false positive with

tolerating the possible false negative. In order to bias

the classifier, we introduce a related notion of

asymmetric loss Asy_Loss [29] :

⎪
⎪
⎩

⎪
⎪
⎨

⎧

==

==

=

otherwise ,0

0)C(x and 1y if ,
1

1)C(x and 0y if ,

_ ii

ii

k

k

LossAsy

(1)

where C(xi) is the class assigned by the boosted

classifier. In this way, by tuning the value of k, a

negative point classified as a positive can be penalized

much more than a positive point as a negative. (In our

experiments, we empirically set it as 1.5.)

The advantage of using AdaBoost and perceptron as

a training scheme of classifier is that we can easily

tune the parameters to make the training process bias to

high precision.

4.2. Features
In total, we define three types of features. All of the

feature information can be easily obtained from online

digital libraries such as ArnetMiner.org, DBLP, and

CiteSeer. All features are defined for each pair of paper

and cluster. The features are defined based on

relationships of the pairs (p, c), which makes them

quite general and can be used for any disambiguation

task. For simplifying the description, we give several

notations first.

Let the principle author denotes the author name to

be disambiguated. Let p denotes a paper, c denotes a

cluster of papers, a denotes an author, function a(p)

denotes a set of authors of paper p excluding the

principle author, i.e. {a1, a2, …} (likewise for a(c)),

Nc(ai) denotes the occurring time of ai in the cluster c.

Similarly, we define w(p) to represent the set of words

in paper p and Nc(wj) to represent the occurring time of

word wj in the cluster c.

4.2.1 Co-author features

Co-author relationship is very important information

for name disambiguation. Given a pair of paper and

cluster, we define three types of co-author features.

The first feature is defined as | () () |a c a p∩ ,

representing the number of co-occurring authors

between the paper and the cluster.

The second feature is defined as

() ()max ()
ia a p a c c iN a
∈ ∩ , which essentially represents

how frequent an co-author ai in paper p occurs in the

cluster c.

The other feature is defined as () ()

()

max ()

max ()

i

i

a a p a c c i

a a c c i

N a

N a

∈

∈

∩ , a

smoothingly normalized form of the second feature.

For example, for disambiguating the name

“Michael”, we have a paper with co-authors “Tom,

Jerry, Jack” and a cluster with co-authors “Tom (2),

Jerry (3), Alice (5)” (the number in the round brackets

denotes the number of the co-author appearing in the

cluster). Then the value of the first feature is 2

(|{“Tom”, “Jerry”}|); the value of the second feature is

3 (Nc(“Jerry”)); and the value of the third feature is 0.6.

4.2.2. Title features

We define three similar title features as those of

author features. The first feature is | () () |w c w p∩ ; the

second feature is
() ()max ()

jw w p w c c iN w
∈ ∩ ; and the third

feature is
() ()

()

max ()

max ()

j

j

w w p w c c j

w w c c j

N w

N w

∈

∈

∩
.

4.2.3. Published venue features

The feature represents the similarity between the

published venue of the paper and the set of published

venues in the paper cluster. The similarity is defined as:

()

1.0, (() ())
(,)

max (,),
iv v c p i

if v p v c
sim p c

sim v v otherwise
∈

∈⎧⎪
= ⎨
⎪⎩

(2)

where v(p) is the published venue of paper p and v(c) is

the set of published venues in cluster c; sim(vp,vi)

denotes the similarity between two published venues.

For calculating the similarity sim(vp,vi), we first

generate a vector by viewing all authors who published

papers at vp or vi as features (the authors are obtained

from Arnetminer.org), and then compute the cosine

similarity of the two vectors.

5. Disambiguation
Based on the atomic clusters generated from the

previous step, we can apply any kind of clustering

method to generate the final clustering result, which is

viewed as the disambiguation result. In this paper, we

employ two clustering methods: Hierarchical clustering

and K-means clustering method. More advanced

clustering methods might be helpful for improving the

disambiguation performance. For further work, we will

try more advanced clustering methods. In this work we

focus on investigating if/how the atomic clustering idea

can help the disambiguation task.

We make several adaptations in the original

clustering methods for utilizing the results of atomic

cluster finding.

5.1. Hierarchical clustering with atomic

clusters
In this paper, we use the agglomerative Hierarchical

clustering method which runs in a bottom-up process.

The algorithm starts by placing each original point into

a single cluster. In each of iteration, the clustering

algorithm calculates distance between each two

clusters, and merges the pair of clusters into a larger

one which has the smallest distance of all the pairs.

The process terminates when obtaining a pre-defined

number of clusters.

We apply the Hierarchical clustering method on the

atomic clusters generated from the previous step and

set the real author number as the cluster number. In

essence, we replace the initializing points of single

publication with the result of atomic clusters finding.

Then in each iteration, we calculate the similarity

between two of clusters c1 and c2 using Equation (3),

and combine the two atomic clusters which have the

highest similarity.

||||

),(_
),(_

21

, 21

21
2211

cc

ppPubSim
ccClusterSim

cpcp

⋅

=

∑
∈∈

(3)

In Equation (3), p1 and p2 are the publications

respectively belong to c1 and c2. For the similarity

between two publications, we employ the vector space

model to represent each publication and utilize the

cosine measurement to calculate the similarity. Finally,

the obtained clustering results will be taken as the

disambiguation results.

5.2. K-means clustering with atomic clusters
K-means is another state-of-the-art algorithm for

the clustering problem. Given the expect number of

cluster k, the algorithm proceeds as follows: first, it

selects k atomic cluster as “initial points” according

some strategy, with each of them representing the

centre of a cluster. Then in iterations, the algorithm

alternately performs: (1) assignment of the rest atomic

cluster to its nearest cluster according to the distance

from the cluster centre; (2) calculation of the new

cluster centre based on the mean of all points assigned

to each cluster. This process continues until

convergence (no point changes its assignment).

Differing from the traditional K-means, in

iterations, we always view the atomic cluster as an

inseparable “point” as in the traditional method. Thus,

the assignments and distance calculation are based on

atomic cluster. Finally, again we can obtain k clusters,

which are viewed as the disambiguation results.

5.3. Features
We define features for the clustering algorithm. For

both of the two clustering algorithms, we define each

word occurring in paper titles, paper authors, and paper

published venues as a binary feature.

6. Experiment
6.1. Data sets

To evaluate our proposed method, we created a

dataset from the Arnetminer system

(http://arnetminer.org). This dataset includes 16 real

person names with their published 1,250 papers. For

these names, some only have a few persons. For

example “Jie Tang” and “Kuo Zhang” only represent

two different persons respectively, and “Chang Cheng”

three. However, some other names seem to be popular.

For example, there are 16 different “Gang Wu” and 22

different persons named “Yi Li”. Table 1 and Table 2

show statistics of the data set.

Table 1. Statistics of the data set

Name #Pub #Per Name #Pub #Per

Ajay Gupta 26 4 Yi Li 42 21

Jing Zhang 54 25 Bing Liu 130 11

Rakesh Kumar 61 5 Bin Yu 66 12

Lei Wang 109 36 Jie Tang 21 2

Kuo Zhang 6 2 Wei Wang 305 80

Michael Wagner 44 12 Gang Wu 40 16

Jim Smith 33 5 Wen Gao 286 4

Cheng Chang 12 3 Hui Fang 15 3

Table 2.Detailed statistics of two author names

Name Affiliation
#Public-

ations

Wen Gao

(286/4)

Chinese Academy of Sciences 70

The College of William and Mary

in Virginia, USA
2

Thomson Inc.Princeton 1

Purdue Univ. 1

Jing

Zhang

(54/25)

Shanghai Jiao Tong Univ. 6

Alabama Univ. 8

Univ. of California, Davis 4

Carnegie Mellon Univ. 5

Five human annotators conducted annotation for

disambiguating the names. A spec was created to guide

the annotation process. Each paper is labelled with a

number indicating the actual person. The labeling work

was carried out based on the publication lists on the

authors’ homepages, affiliations and email addresses

on Web databases (e.g., ACM Digital Library). For

further disagreements in the annotation, we conducted

“majority voting”.From the Table 1 and Table 2, we

can see that the distribution of actual person for each

name is extremely unbalanced. For example, there are

in total 286 papers authored by “Wen Gao” with 282 of

them authored by Prof. Wen Gao from Institute of

Computing at Chinese Academy of Science. Only four

papers are authored by the other three “Wen Gao”.

This also reveals that the problem is some kind

different from the traditional clustering problem and

the existing methods may not be effective on it.

6.2. Evaluation measures
We use pair-wise measures to evaluate our name

disambiguation method and compare the results with

baseline methods. The pair-wise measures are based on

the traditional information retrieval measures, adapted

for evaluating disambiguation by considering the

same-assigned pairs. The definitions of these measures

are shown as follows:

_
#PairsCorrectlyPredictedToSameAuthor

Pairwise Precision
#TotalPairsPredictedToSameAuthor

=

PairsCorrectlyPredictedToSameAuthor
Pairwise_Recall

#TotalPairsToSameAuthor
=

2
_ 1

P recision R eca ll
P a irw ise F m easu re

P recision + R eca ll

× ×
− =

6.3. Experimental design
We used the Hierarchical clustering and K-means

clustering without atomic cluster finding as the

baselines. We employed the clustering algorithms

implemented in Weka 3.5.6 1in our experiments.

As the atomic cluster finding needs training data.

We used the cross validation for evaluation. We

divided the dataset into four sets, and in each time,

chose three of them as training set and the rest as the

test set. On each test data, we compared the results

obtained by the two clustering methods with and

without atomic clusters finding. In the experiment, we

empirically set the real author number as termination

condition of the clustering iterations.

6.4. Experimental result
6.4.1. Hierarchical clustering + atomic clusters

We evaluated the performances of using

hierarchical clustering for name disambiguation with

(AHC) and without (HC) atomic clusters. Figure 2

shows the experimental results. We see that our atomic

cluster based approach indeed help improve

performances on most of the names against the

baseline method. Averagely, the improvement is 8% in

terms of pairwise-F1-measure.

Fig. 2 Performances of using hierarchical clustering for name
disambiguation with (AHC) and without (HC) atomic clusters.

We can also see that on some names, the

improvements are limit while on some other names, the

improvements are significant. By further analysing the

results, we have found that generally when the number

of real persons for a name is small (e.g., 2-5), the naive

hierarchical clustering seems to perform well such as,

“Jie Tang”, “Cheng Chang”, and “Hui Fang”. However,

when number of real persons is large (e.g., >10), the

naive hierarchical clustering seems to not be able to

accurately capture the distribution of the papers. The

1 http://www.cs.waikato.ac.nz/ml/weka/

found has a straightforward explanation: with the

number of real persons increasing, the border of each

cluster also becomes more blurry, which makes the

naive hierarchical clustering algorithm difficult to

distinguish the clusters from each other. The atomic

cluster finding idea can be viewed as a method of

conversion of the distribution space of papers. In the

new space, the clusters would be easier to be separated.

Finally, we have to say in a few cases, e.g., “Wei

Wang”, even with the atomic clustering results, it is

still difficult to obtain a good disambiguation result.

Several “Wei Wang” work on the same research topics

such as “data mining” and have the same co-author,

even work in a same university.

6.4.2. K-means clustering + atomic clusters

We evaluated the performance of using K-means

clustering for disambiguation with and without atomic

clusters. Figure 3 shows the experimental results. For

K-means with atomic clusters, we have tried different

strategies for selecting the initial centers. For the first

one (we called K-means(R)), we use random selection.

For the second one (we called K-means(H)), we use as

the initial centers the K atomic clusters that have the

averagely largest distance from all other clusters. For

the third one (we called K-means(L)), we use as the

initial centers the K atomic clusters that have the

averagely smallest distance from all other clusters. For

the random selection strategy, we have tried 100 times

of random selection and give the average performance.

As we can see from the Figure 3, all the different

strategies of using the atomic clustering results

improve the performance of K-means more than 20%.

It can be also seen that the improvements on

different names are different. According to our analysis,

we have found the improvements depend on the

distribution of features for each name. Naive K-means

is based on the assumption that the data is generated

from a gauss distribution. This implies that if the data

distribution of a name (e.g., “Cheng Chang”) can fit a

gauss distribution well, our atomic finding method may

have limited contributions to the final results.

Otherwise, the atomic finding essentially convert the

clustering problem from the data points space to a

atomic cluster space that would be more fit to the

gauss distribution.

6.4.3. Distribution analysis
Figure 4 shows three typical feature distributions in

our data sets. The graphs were generated using a

dimension reduction method described in [3]. With this

method, the high dimension points can be described in

two dimensions, and the distance between each two

points is similar to the distance in original space. The

three typical distributions are: (1) publications of

Fig.3 Performances of using K-means clustering for name disambiguation with (Atomic K-means)
 and without (K-means) atomic clusters.

different persons are clearly separated (“Hui Fang”, in

Figure 4 (a)). Name disambiguation on this kind of

data can be solved pretty well by both naive

hierarchical clustering method and our approaches; (2)

publications are mixed together, however, there is a

dominate author who writes most of the paper (e.g.,

“Bing Liu”, in Figure 4 (b)); our approach of

hierarchical clustering with atomic clusters can achieve

75% of average recall; and (3) publications of different

authors are mixed (“Jing Zhang” & “Yi Li”, in Figure

4 (c) and (d)). Our method with atomic clusters can

achieve a performance of 80% in terms of F1-measure.

There are also some other cases with more complex

distributions, for example “Wei Wang” and “Lei

Wang”. In such cases, even with atomic clusters, both

Hierarchical clustering and K-means cannot obtain

satisfactory results.

(a) (b)

(c) (d)

Fig.4 Publications distribution of different person names
in dimension reduction space

We also track the process of algorithm. Take Bing

Liu as an example, 51 distinct sets of publication can

be get according to different set of associated co-

authors. But finally, there are only 11 different persons

named Bing Liu in the dataset. It shows that although

author relationship feature can achieve high precision,

recall is too low in many name set. The second step of

clustering can boost recall of final result.

6.4.4. Atomic cluster finding

Fig.5 Performances of using different features

We conducted an experiment to evaluate the

performance of the atomic cluster finding. We tested

the approach with different types of features. Figure 5

shows the performances with different features. We see

that averagely the co-author features result in the best

performance in terms of both precision and recall. But

sometimes, the title features seem to useful. For

example, for “Bing Liu”, the precision and recall of

using co-author features are “1.00” and “0.39”,

respectively; while using title features, the precision

and recall are “0.63” and “0.59”. The title features can

greatly improve the recall in this case. With the

publisher features only, we can achieve a high

precision but very low recall.

7. Conclusions
In this paper we have investigated the problem of

name disambiguation. We have proposed an approach

of using atomic clusters to improve the performance of

name disambiguation, and presented two

implementations by extending two basic clustering

methods. We applied the approach to a real-world

dataset from ArnetMiner.org. Experimental results

show that our approach of using atomic clusters

finding for name disambiguation can performs

significantly better than baseline clustering methods.

Experiments also unveil that co-author features are the

most important features when generating the atomic

clusters.

8. Acknowledgement
The work is supported by the National Natural

Science Foundation of China (90604025, 60703059),

Chinese National Key Foundation Research and

Development Plan (2007CB310803), and Chinese

Young Faculty Research Funding (20070003093).

. References
[1] R. Bekkerman and A. McCallum. Disambiguating

Web Appearances of People in a Social Network, In

Proc. of WWW’2005, pp. 463-470, ACM Press, 2005.

[2] I. Bhattacharya, L. Getoor. Deduplication and Group

Detection using Links. In Proc. of Link KDD’04, USA,

2004.

[3] D. Cai, X. He, and J. Han. Spectral Regression for

Dimensionality Reduction. Department of Computer

Science Technical Report No. 2856, University of

Illinois at Urbana-Champaign.

[4] Z. Chen, D. V. Kalashnikov, and S. Mehrotra. Adaptive

Graphical Approach to Entity Resolution. In Proc. of

JCDL’2007, pp. 204-213.

[5] D. Cohn, R. Caruana, and A. McCallum. Semi-

supervised Clustering with User Feedback. Technical

Report TR2003-1892, Cornell University, 2003.

[6] E. Elmacioglu, Y. Tan, S. Yan, M. Kan, D. Lee.

PSNUS: Web People Name Disambiguation by Simple

Clustering with Rich Feature. In Proc. Of 4th Int’l

Workshop on Semantic Evaluation (SemEval), 2007.

[7] M. Ester, R. Ge, B.J. Gao, Z. Hu, and B. Ben-Moshe.

Joint Cluster Analysis of Attribute Data and

Relationship Data: the Connected K-center Problem. In

Proc. of SDM’2006.

[8] Y. Freund, R. Schapire, A Decision-Theoretic

Generalization of on-Line Learning and an Application

to Boosting, In Proc. of EuroCOLT ’95, pages 23-37,

1995.

[9] Y. Freund, R. Schapire, Experiments with a New

Boosting Algorithm, In Proc. of ICML’1996.

[10] H. Han, L. Giles, H. Zha, C. Li, and K. Tsioutsiouliklis.

Two Supervised Learning Approaches for Name

Disambiguation in Author Citations. In Proc. of

JCDL’2004, USA, 2004, 296 – 305.

[11] H. Han, H. Zha, and C.L. Giles. Name Disambiguation

in Author Citations using a K-way Spectral Clustering

Method. In Proc. of JCDL’2005, USA, 2005, 334 – 343

[12] H. Han, W. Xu, H. Zha, C. Giles. A Hierarchical Naïve

Bayes Mixture Model for Name Disambiguation in

Author Citations. In Proc. of SAC’05, 2005.

[13] J. Han, M. Kamber. Data Mining, Concepts and

Techniques. Second Edition, 2006.

[14] J. Huang, S. Ertekin, C. Giles. Efficient Name

Disambiguation for Large-Scale Databases. In Proc. of

PKDD, 2006.

[15] J. Huang, S. Ertekin, C. Giles. Fast Author Name

Disambiguation in CiteSeer”. IST Technical Report No.

0019, the Pennsylvania State University, 2006

[16] L. Kaufman and P. Rousseeuw. Finding Groups in Data:

An Introduction to Cluster Analysis. New York: Wiley,

1990.

[17] D. Lee, B. On, J. Kang, S. Park. Effective and Scalable

Solutions for Mixed and Split Citation Problems in

Digital Libraries. In Proc. of IQIS, 2005.

[18] X. Li, P. Morie, and D. Roth. Identification and

Tracing of Ambiguous Names: Discriminative and

Generative Approaches, In Proc. of AAAI’2004, pp.

419-424

[19] B. Malin, E. Airoldi, K. Carley. A Network Analysis

Model for Disambiguation of Names in Lists, In Proc.

of SIAM Workshop, 2005.

[20] B. Malin. Unsupervised Name Disambiguation via

Social Network Similarity. In Proc. of SIAM SDM

Workshop, 2005.

[21] G. Mann and D. Yarowsky. Unsupervised personal

name disambiguation. In Proc of CoNLL. Canada.

2003.

[22] E. Minkov, W.W. Cohen, and A.Y. Ng. Contextual

Search and Name Disambiguation in Email using

Graphs. In Proc. of SIGIR’2006, USA, 2006, 27-34.

[23] B. On, D. Lee, J. Kang and P. Mitra, Comparative

Study of Name Disambiguation Problem using a

Scalable Blocking-based Framework, In Proc. of

JCDL’05, 2005.

[24] B. On, D. Lee. Scalable Name Disambiguation using

Multi-level Graph Partition. In Proc. of SIAM Int’l

Conf. on Data Mining (SDM), 2007.

[25] Y. Song, J. Huang, et al. Generative Models for Name

Disambiguation. In Proc. of WWW, 2007.

[26] Y. F. Tan, M. Kan, and D. Lee. Search Engine Driven

Author Disambiguation. In Proc. of JCDL’2006, USA,

June 2006, 314-315.

[27] J. Tang, D. Zhang, and L. Yao. Social Network

Extraction of Academic Researchers. In Proc. of

ICDM’2007. pp. 292-301.

[28] P. Viola, M. Jones, Rapid Object Detection using a

Boosted Cascade of Simple Features, In Proc. of CVPR,

2001.

[29] P. Viola, M. Jones, Fast and Robust Classification

using Asymmetric AdaBoost and a Detector Cascade.

In NIPS, 2002

[30] X. Yin, J. Han and Philip S. Yu, Object Distinction:

Distinguishing Object with Identical Names, in Proc.

of ICDE'07, Turkey, 2007.

[31] D. Zhang, J. Tang, J. Li, and K. Wang. A Constraint-

Based Probabilistic Framework for Name

Disambiguation. In Proc. of CIKM’2007. pp. 1019-

1022

