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Abstract 
Name ambiguity is a critical problem in many 

applications, in particular in the online bibliography 

systems, such as DBLP and CiteSeer. Previously, 

several clustering based methods have been proposed 

although, the problem still presents to be a big 

challenge for both research and industry communities. 

In this paper, we present a complementary study to the 

problem from another point of view. We propose an 

approach of finding atomic clusters to improve the 

performance of existing clustering-based methods. We 

conducted experiments on a dataset from a real-world 

system: Arnetminer.org. Experiments results show that 

significant improvements can be obtained by using the 

proposed atomic clusters finding approach (about 

+8% and +27% improvements depending on different 

clustering methods).  

1. Introduction 
Name ambiguity is a real-world problem that one 

name possibly refers to more than one actual persons. 

It is a critical problem in many applications, such as: 

expert finding, people connection finding, and 

information integration.  

Specifically, in scientific bibliography systems, the 

name disambiguation problem can be formalized as: 

given a list of publications with all sharing an identical 

author name but might actually referring to different 

persons, the task then is to assign the publications to 

some different clusters, each of which contains 

publications written by the same person. 

By viewing all publications as vectors of multiple 

dimensions and each publication as a point in the 

multiple-dimensional space, we can obtain a 

straightforward solution by using clustering methods to 

deal with this problem. Unfortunately, such simple 

solution seems not work well on this task. Our 

experiments also confirm this (cf. Section 6). The 

reason might be that publication data in the multiple-

dimensional space are quite sparse and thus it is hard to 

find the correct centres of clusters and further hard to 

cluster each publication correctly.  

Several research efforts have been placed to the 

problem. For example, [11] defines three types of 

features and applies a K-way spectral clustering 

algorithm for name disambiguation. [30] proposes an 

approach called DISTINCT by combining two 

similarity measures: set resemble of neighbor tuples 

and random walk probability. [31] proposes a semi-

supervised framework to the problem based on hidden 

Markov random fields. We consider this problem from 

another angle. Our basic idea is to find the atomic 

clusters and then use the atomic finding results to help 

improve the traditional clustering algorithms. The 

atomic cluster means that publications in the same 

atomic cluster must be correctly grouped (high 

precision) but might be further grouped in the process 

of clustering (possible low recall). Intuition behind this 

idea is that we can use atomic cluster finding results to 

ease the problem, so as to improve the performance of 

clustering methods for name disambiguation.  

Therefore, questions arising here include: 1) how to 

accurately find the atomic clusters, as it will be critical 

to the following clustering process? 2) how to combine 

the found atomic clusters into the traditional clustering 

algorithms? 

In this paper, we first present the concept of atomic 

cluster. We propose using a bias classification method 

for finding the atomic clusters for a disambiguation 

problem. Features were defined for the classifier. 

Moreover, we examine the contributions of different 

kinds of features in training the classifier. Then, we 

describe how to integrate the atomic clusters finding 

results into the traditional algorithms. Specifically, we 

integrate the atomic clusters into two state-of-the-art 

clustering algorithms: Hierarchical clustering and K-

means. We have found that those clustering methods 

can benefit a lot from our method. 

We applied the obtained disambiguation process, 

consisting of atomic clusters finding and combination 

of the finding results into existing clustering 

algorithms, to a dataset collected from Arnetminer.org. 

The data set contains 1,250 publications of 16 different 

author names in total. Our experiment results show that 



using atomic clusters can significantly improve the 

performance of disambiguation by Hierarchical 

clustering and K-means clustering (about 8% and 27% 

in terms of F1-measure respectively). 

Our contributions in this paper include: 1) proposal 

of an atomic cluster finding method; 2) combination of 

the atomic cluster method into the traditional clustering 

algorithms; and 3) empirically verification of the 

proposed methods. 

The rest of this paper is organized as follow: 

Section 2 reviews the related work. Section 3 describes 

the overview of our approach of using atomic clusters 

to improve the performances of two kinds of basic 

clustering methods. Section 4 proposes our method for 

finding atomic clusters. Section 5 presents two 

implementations of name disambiguation based on the 

atomic cluster finding results. Experimental results are 

presented in section 6. Finally, we conclude the paper 

in section 7. 

2. Related work 
Several approaches have been proposed for name 

disambiguation in different domains, for example, 

disambiguation on Citations [10] [11] [26] [30], Web 

Pages [1] [21], Email data [22], Internet Movie 

Database [19] and so on. 

[11] proposed an unsupervised learning approach 

using K-way spectral clustering method. They studied 

two types of feature weight, the usual “TFIDF” and the 

normalized “TF” (“NTF”). Then, they calculate a 

Gram matrix for each name dataset and apply K way 

spectral clustering algorithm to the Gram matrix to get 

the result. In [26], a search engine based clustering 

method is proposed. They represent the features of 

each citation as relevant URLs from search engine and 

weighted it by its IHFs. Then they compute the pair 

wise similarity of two citations using cosine similarity 

and perform a hierarchical agglomerative clustering to 

derive the final clusters. 

Two supervised methods are proposed in [10]. This 

paper investigates two supervised learning approaches 

to disambiguate authors in the citations. One approach 

uses the Naive Bayes probability model, a generative 

model to capture all authors’ writing patterns using 

only positive training citations; the other uses Support 

Vector Machines(SVMs) and the vector space 

representation of citations, a discriminative model 

learning from both positive and negative training 

citations the distinction between different authors’ 

citations. Therefore, when there is a new citation, both 

two models will predict whether it belongs to a certain 

author. However, one drawback of supervised methods 

is its scalability when using features like this. It is also 

impractical to train thousands of models for all 

individuals in a large Digital Library. See also [6]. 

[31] proposes a constraint-based probabilistic model 

for semi-supervised name disambiguation. They 

formalize the name disambiguation problem in a 

constraint based probabilistic framework using Hidden 

Markov Random Fields. Then define six types of 

constraints and employ EM algorithm to learn different 

distance metric for different persons. 

Some other methods have also been proposed based 

on graphical theory. For example, Chen et al. [4] 

propose a graphical approach for entity resolution. 

They construct and analyze the entity-relationship 

graph constructed for the dataset and propose a method 

to measures the degree of interconnectedness between 

nodes in the graph, which is verified to be effective to 

improve the quality of entity resolution. Yin et al. [30] 

propose an approach called DISTINCT by combining 

two similarity measures: set resemble of neighbor 

tuples and random walk probability. They propose a 

method to weight different types of links in the graph. 

[24] adapt the multi-level graph partition technique to 

solve the large-scale name disambiguation problem. 

On the other dataset, [1] tries to distinguish web 

pages to different individuals with the same name. It 

extends the problem from one person to a group of 

people who are related to each other, and identifies all 

their Web presence simultaneously. They present two 

unsupervised frameworks: one was based on link 

structure of the Web pages; the other used 

Agglomerative/Conglomerative Double Clustering 

method. [22] solves the name disambiguation problem 

in email data. They extend similarity metrics for emails 

embedded in graphs via a lazy graph walk. The re-

ranking schemes based on the graph-walk similarity 

measures are demonstrated to work well. In [19], they 

propose a method which employs a less strict similarity 

measures by using random walks between ambiguous 

observations on a global social network. This similarity 

can provide more robust disambiguation capability 

rather than exact one. 

3. Our approach overview 
In this section, we first give an overview of our 

approach and then introduce the details of each step in 

the approach. 

Our preliminary experiments and analysis show that 

one difficulty in name disambiguation is that data 

points (publications) are quite sparse in the feature 

space. Some publications might be located far away 

from the target cluster centres, which makes it difficult 

to obtain good performance by directly using the 

tradition clustering methods. By further analyzing the 

data, we have found that there are strong relationships 

between some points. For example, two papers have 

the same co-author and were published at the same 

conference. If such kind of points can get together as 



atomic clusters, they will feed the clustering algorithm 

a better initial condition. By the atomic cluster, we 

mean a cluster of publications that have strong 

relationships/similarity with each other and will not be 

split in the following clustering process. Based on this 

observation, we propose an approach of atomic cluster 

finding for name disambiguation. 

 

Fig. 1  Processing flow in our disambiguation approach. 
(a) Original Points  (b) Atomic Clusters  (c) Disambiguation 

results 
Note: each point represents a publication. 

Fig. 1 shows the processing flow of our approach for 

name disambiguation. The process consists of two 

steps: atomic cluster finding and disambiguation.  

In the first step, we intend to find publications which 

have ‘strong’ relationships/similarities (which can be 

shown from (a) to (b) in Fig. 1). We output the 

strongly related points as atomic clusters for the later 

processing. To determine how strongly two 

publications are related to each other, we utilize a bias 

classification based method. 

In the second step, we perform the disambiguation 

based on the atomic cluster finding results (as shown 

from (b) to (c) in Fig. 1). We take atomic clusters as 

the input for a clustering algorithm (e.g., Hierarchical 

clustering or K-means clustering) and output the final 

clustering results as the disambiguation results. 

4. Atomic cluster finding 
In this step, the main purpose is to use some 

features which contain information that can strongly 

indicates whether the publications are written by the 

same person. In our approach, we use a supervised 

classifier to generate the atomic clusters. The algorithm 

used in this step is described in Algorithm 1.  

The input of the algorithm is a list of publications 

having the author name we are going to disambiguate. 

We sort all publications by their publish year (for the 

publications which publish in the same year, we simply 

use the alphabetical order), and then feed them to the 

algorithm one by one. The key in the algorithm is that 

a bias-classifier is used to determine if a publication 

should be grouped into an existing atomic cluster or a 

new cluster. We call it bias-classifier because we want 

to have a classifier that has high precision, which 

means that if a publication is assigned to cluster cj, it 

must be highly possibly correct. Otherwise, we prefer 

to create a new cluster. In this way, we can have a high 

probability to keep the atomicity for each cluster. 

Algorithm I. Algorithm of atomic cluster generation 

Input: 

A list of publications which all share same author name 

Output: 

A list of atomic clusters 

Initialization: 

Sort the publications by the order of increment of their 

publisher year. Create an empty atomic cluster list c={Ø}. 

Iteration: 

1. For each publication pi, in {p1, p2, …, pm} 

2.    For each cluster cj in the atomic cluster list c 

      //use a classifier to predict if paper pi should be grouped 

into cj. 

3.      If Bias-Classifier(pi, cj)>0 then  

4.         assign the publication into the cluster cj; 

5.      End If 

6.    End For 

7.    If no cluster assigned with publication pi; 

8.        create a new cluster ck with pi and add ck to the list c;

9.     End If 

10. End For 

The intuition behind the algorithm stems from 

observations on how human beings disambiguate 

publications: (1) people would like to start from the 

first published paper, when there is no ambiguity 

problem because there is only one paper; (2) by going 

on checking more published papers, people always 

would like to adapt the “easy first” and “high-

confidence first” strategy, that is people first cluster the 

papers that she/he has high confidence with; (3) for the 

rest papers that might be somehow difficult, people 

would adapt some compromising method. Our 

algorithm matches with the three points above. We sort 

the papers by their published year (1), find atomic 

clusters (2), and employ traditional clustering 

algorithm to find the final disambiguation results (3).  

Correspondingly, we see that the bias-classifier here 

play a role as a human being finds the paper clusters of 

“high-confidence”. The classification based method 

consists of two stages: training and prediction. We use 

human labeled data to train a bias-classifier and use the 

classifier for the later prediction.  

4.1. Bias classifier 
The difference in the classifier from conventional 

classification problem is that we view a pair of paper-

cluster (p, c) as an instance. Features are defined based 

on relationships of each pair. If the prediction result for 

a pair by the classifier is positive, we say that the paper 

should be grouped into the atomic cluster c.  

As the classifier, we use AdaboostM1 [8] [9] with 

several adaptations. In our system, we adapt a variation 

of AdaBoost as a bias classifier, in that we want to find 



atomic clusters with high precision (but not necessary 

high recall). Specifically, in the learning algorithm, 

each weak classifier is defined as a single layer 

perceptron. (We selected perceptron due to its easy 

implementation and that its precision and recall can be 

easily balanced.) AdaBoost minimizes a quantity 

related to the classification error. In our setting, we 

want to minimize the number of false positive with 

tolerating the possible false negative. In order to bias 

the classifier, we introduce a related notion of 

asymmetric loss Asy_Loss [29] :  
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where C(xi) is the class assigned by the boosted 

classifier. In this way, by tuning the value of k, a 

negative point classified as a positive can be penalized 

much more than a positive point as a negative. (In our 

experiments, we empirically set it as 1.5.) 

The advantage of using AdaBoost and perceptron as 

a training scheme of classifier is that we can easily 

tune the parameters to make the training process bias to 

high precision.  

4.2. Features 
In total, we define three types of features. All of the 

feature information can be easily obtained from  online 

digital libraries such as ArnetMiner.org, DBLP, and 

CiteSeer. All features are defined for each pair of paper 

and cluster. The features are defined based on 

relationships of the pairs (p, c), which makes them 

quite general and can be used for any disambiguation 

task. For simplifying the description, we give several 

notations first.  

Let the principle author denotes the author name to 

be disambiguated. Let p denotes a paper, c denotes a 

cluster of papers, a denotes an author, function a(p) 

denotes a set of authors of paper p excluding the 

principle author, i.e. {a1, a2, …} (likewise for a(c)), 

Nc(ai) denotes the occurring time of ai in the cluster c. 

Similarly, we define w(p) to represent the set of words 

in paper p and Nc(wj) to represent the occurring time of 

word wj in the cluster c. 

4.2.1 Co-author features 

Co-author relationship is very important information 

for name disambiguation. Given a pair of paper and 

cluster, we define three types of co-author features. 

The first feature is defined as | ( ) ( ) |a c a p∩ , 

representing the number of co-occurring authors 

between the paper and the cluster. 

The second feature is defined as 

( ) ( )max ( )
ia a p a c c iN a
∈ ∩ , which essentially represents 

how frequent an co-author ai  in paper p occurs in the 

cluster c. 

The other feature is defined as ( ) ( )

( )

max ( )

max ( )

i

i

a a p a c c i

a a c c i

N a

N a

∈

∈

∩ , a 

smoothingly normalized form of the second feature. 

For example, for disambiguating the name 

“Michael”, we have a paper with co-authors “Tom, 

Jerry, Jack” and a cluster with co-authors “Tom (2), 

Jerry (3), Alice (5)” (the number in the round brackets 

denotes the number of the co-author appearing in the 

cluster). Then the value of the first feature is 2 

(|{“Tom”, “Jerry”}|); the value of the second feature is 

3 (Nc(“Jerry”)); and the value of the third feature is 0.6. 

4.2.2. Title features 

We define three similar title features as those of 

author features. The first feature is | ( ) ( ) |w c w p∩ ; the 

second feature is 
( ) ( )max ( )

jw w p w c c iN w
∈ ∩ ; and the third 

feature is 
( ) ( )

( )

max ( )

max ( )

j

j

w w p w c c j

w w c c j

N w

N w

∈

∈

∩
. 

4.2.3. Published venue features 

The feature represents the similarity between the 

published venue of the paper and the set of published 

venues in the paper cluster. The similarity is defined as: 

( )

1.0, ( ( ) ( ))
( , )

max ( , ),
iv v c p i

if v p v c
sim p c

sim v v otherwise
∈

∈⎧⎪
= ⎨
⎪⎩

(2) 

where v(p) is the published venue of paper p and v(c) is 

the set of published venues in cluster c; sim(vp,vi) 

denotes the similarity between two published venues. 

For calculating the similarity sim(vp,vi), we first 

generate a vector by viewing all authors who published 

papers at vp or vi as features (the authors are obtained 

from Arnetminer.org), and then compute the cosine 

similarity of the two vectors. 

5. Disambiguation 
Based on the atomic clusters generated from the 

previous step, we can apply any kind of clustering 

method to generate the final clustering result, which is 

viewed as the disambiguation result. In this paper, we 

employ two clustering methods: Hierarchical clustering 

and K-means clustering method. More advanced 

clustering methods might be helpful for improving the 

disambiguation performance. For further work, we will 

try more advanced clustering methods. In this work we 

focus on investigating if/how the atomic clustering idea 

can help the disambiguation task. 

We make several adaptations in the original 

clustering methods for utilizing the results of atomic 

cluster finding. 

5.1. Hierarchical clustering with atomic 

clusters 
In this paper, we use the agglomerative Hierarchical 

clustering method which runs in a bottom-up process. 

The algorithm starts by placing each original point into 

a single cluster. In each of iteration, the clustering 



algorithm calculates distance between each two 

clusters, and merges the pair of clusters into a larger 

one which has the smallest distance of all the pairs. 

The process terminates when obtaining a pre-defined 

number of clusters.  

We apply the Hierarchical clustering method on the 

atomic clusters generated from the previous step and 

set the real author number as the cluster number. In 

essence, we replace the initializing points of single 

publication with the result of atomic clusters finding. 

Then in each iteration, we calculate the similarity 

between two of clusters c1 and c2 using Equation (3), 

and combine the two atomic clusters which have the 

highest similarity.  
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In Equation (3), p1 and p2 are the publications 

respectively belong to c1 and c2. For the similarity 

between two publications, we employ the vector space 

model to represent each publication and utilize the 

cosine measurement to calculate the similarity. Finally, 

the obtained clustering results will be taken as the 

disambiguation results. 

5.2. K-means clustering with atomic clusters 
K-means is another state-of-the-art algorithm for 

the clustering problem. Given the expect number of 

cluster k, the algorithm proceeds as follows: first, it 

selects k atomic cluster as “initial points” according 

some strategy, with each of them representing the 

centre of a cluster. Then in iterations, the algorithm 

alternately performs: (1) assignment of the rest atomic 

cluster to its nearest cluster according to the distance 

from the cluster centre; (2) calculation of the new 

cluster centre based on the mean of all points assigned 

to each cluster. This process continues until 

convergence (no point changes its assignment).  

Differing from the traditional K-means, in 

iterations, we always view the atomic cluster as an 

inseparable “point” as in the traditional method. Thus, 

the assignments and distance calculation are based on 

atomic cluster. Finally, again we can obtain k clusters, 

which are viewed as the disambiguation results. 

5.3. Features 
We define features for the clustering algorithm. For 

both of the two clustering algorithms, we define each 

word occurring in paper titles, paper authors, and paper 

published venues as a binary feature. 

6. Experiment 
6.1. Data sets 

To evaluate our proposed method, we created a 

dataset from the Arnetminer system 

(http://arnetminer.org). This dataset includes 16 real 

person names with their published 1,250 papers. For 

these names, some only have a few persons. For 

example “Jie Tang” and “Kuo Zhang” only represent 

two different persons respectively, and “Chang Cheng” 

three. However, some other names seem to be popular. 

For example, there are 16 different “Gang Wu” and 22 

different persons named “Yi Li”. Table 1 and Table 2 

show statistics of the data set. 

Table 1. Statistics of the data set 

Name #Pub #Per Name #Pub #Per

Ajay Gupta 26 4 Yi Li 42 21 

Jing Zhang 54 25 Bing Liu 130 11 

Rakesh Kumar 61 5 Bin Yu 66 12 

Lei Wang 109 36 Jie Tang 21 2 

Kuo Zhang 6 2 Wei Wang 305 80 

Michael Wagner 44 12 Gang Wu 40 16 

Jim Smith 33 5 Wen Gao 286 4 

Cheng Chang 12 3 Hui Fang 15 3 

Table 2.Detailed statistics of two author names  

Name Affiliation 
#Public-

ations 

Wen Gao

(286/4) 

Chinese Academy of Sciences 70 

The College of William and Mary 

in Virginia, USA 
2 

Thomson Inc.Princeton 1 

Purdue Univ. 1 

Jing 

Zhang 

(54/25) 

Shanghai Jiao Tong Univ. 6 

Alabama Univ. 8 

Univ. of California, Davis 4 

Carnegie Mellon Univ. 5 

Five human annotators conducted annotation for 

disambiguating the names. A spec was created to guide 

the annotation process. Each paper is labelled with a 

number indicating the actual person. The labeling work 

was carried out based on the publication lists on the 

authors’ homepages, affiliations and email addresses 

on Web databases (e.g., ACM Digital Library). For 

further disagreements in the annotation, we conducted 

“majority voting”.From the Table 1 and Table 2, we 

can see that the distribution of actual person for each 

name is extremely unbalanced. For example, there are 

in total 286 papers authored by “Wen Gao” with 282 of 

them authored by Prof. Wen Gao from Institute of 

Computing at Chinese Academy of Science. Only four 

papers are authored by the other three “Wen Gao”. 

This also reveals that the problem is some kind 

different from the traditional clustering problem and 

the existing methods may not be effective on it. 

6.2. Evaluation measures 
We use pair-wise measures to evaluate our name 

disambiguation method and compare the results with 

baseline methods. The pair-wise measures are based on 

the traditional information retrieval measures, adapted 

for evaluating disambiguation by considering the 

same-assigned pairs. The definitions of these measures 

are shown as follows: 
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6.3. Experimental design 
We used the Hierarchical clustering and K-means 

clustering without atomic cluster finding as the 

baselines. We employed the clustering algorithms 

implemented in Weka 3.5.6 1in our experiments. 

As the atomic cluster finding needs training data. 

We used the cross validation for evaluation. We 

divided the dataset into four sets, and in each time, 

chose three of them as training set and the rest as the 

test set. On each test data, we compared the results 

obtained by the two clustering methods with and 

without atomic clusters finding. In the experiment, we 

empirically set the real author number as termination 

condition of the clustering iterations. 

6.4. Experimental result 
6.4.1. Hierarchical clustering + atomic clusters 

We evaluated the performances of using 

hierarchical clustering for name disambiguation with 

(AHC) and without (HC) atomic clusters. Figure 2 

shows the experimental results. We see that our atomic 

cluster based approach indeed help improve 

performances on most of the names against the 

baseline method. Averagely, the improvement is 8% in 

terms of pairwise-F1-measure. 

 

Fig. 2  Performances of using hierarchical clustering for name 
disambiguation with (AHC) and without (HC) atomic clusters. 

We can also see that on some names, the 

improvements are limit while on some other names, the 

improvements are significant. By further analysing the 

results, we have found that generally when the number 

of real persons for a name is small (e.g., 2-5), the naive 

hierarchical clustering seems to perform well such as, 

“Jie Tang”, “Cheng Chang”, and “Hui Fang”. However, 

when number of real persons is large (e.g., >10), the 

naive hierarchical clustering seems to not be able to 

accurately capture the distribution of the papers. The 

                                                           
1 http://www.cs.waikato.ac.nz/ml/weka/ 

found has a straightforward explanation: with the 

number of real persons increasing, the border of each 

cluster also becomes more blurry, which makes the 

naive hierarchical clustering algorithm difficult to 

distinguish the clusters from each other. The atomic 

cluster finding idea can be viewed as a method of 

conversion of the distribution space of papers. In the 

new space, the clusters would be easier to be separated.  

Finally, we have to say in a few cases, e.g., “Wei 

Wang”, even with the atomic clustering results, it is 

still difficult to obtain a good disambiguation result. 

Several “Wei Wang” work on the same research topics 

such as “data mining” and have the same co-author, 

even work in a same university. 

6.4.2. K-means clustering + atomic clusters 

We evaluated the performance of using K-means 

clustering for disambiguation with and without atomic 

clusters. Figure 3 shows the experimental results. For 

K-means with atomic clusters, we have tried different 

strategies for selecting the initial centers. For the first 

one (we called K-means(R)), we use random selection. 

For the second one (we called K-means(H)), we use as 

the initial centers the K atomic clusters that have the 

averagely largest distance from all other clusters. For 

the third one (we called K-means(L)), we use as the 

initial centers the K atomic clusters that have the 

averagely smallest distance from all other clusters. For 

the random selection strategy, we have tried 100 times 

of random selection and give the average performance. 

As we can see from the Figure 3, all the different 

strategies of using the atomic clustering results 

improve the performance of K-means more than 20%. 

It can be also seen that the improvements on 

different names are different. According to our analysis, 

we have found the improvements depend on the 

distribution of features for each name. Naive K-means 

is based on the assumption that the data is generated 

from a gauss distribution. This implies that if the data 

distribution of a name (e.g., “Cheng Chang”) can fit a 

gauss distribution well, our atomic finding method may 

have limited contributions to the final results. 

Otherwise, the atomic finding essentially convert the 

clustering problem from the data points space to a 

atomic cluster space that would be more fit  to the 

gauss distribution. 

6.4.3. Distribution analysis 
Figure 4 shows three typical feature distributions in 

our data sets. The graphs were generated using a 

dimension reduction method described in [3]. With this 

method, the high dimension points can be described in 

two dimensions, and the distance between each two 

points is similar to the distance in original space. The 

three typical distributions are: (1) publications of 



 

Fig.3 Performances of using K-means clustering for name disambiguation with (Atomic K-means) 
 and without (K-means) atomic clusters. 

different persons are clearly separated (“Hui Fang”, in 

Figure 4 (a)). Name disambiguation on this kind of 

data can be solved pretty well by both naive 

hierarchical clustering method and our approaches; (2) 

publications are mixed together, however, there is a 

dominate author who writes most of the paper (e.g., 

“Bing Liu”, in Figure 4 (b)); our approach of 

hierarchical clustering with atomic clusters can achieve 

75% of average recall; and (3) publications of different 

authors are mixed (“Jing Zhang” & “Yi Li”, in Figure 

4 (c) and (d)). Our method with atomic clusters can 

achieve a performance of 80% in terms of F1-measure. 

There are also some other cases with more complex 

distributions, for example “Wei Wang” and “Lei 

Wang”. In such cases, even with atomic clusters, both 

Hierarchical clustering and K-means cannot obtain 

satisfactory results. 

 
(a) (b) 

 
(c) (d) 

Fig.4 Publications distribution of different person names  
in dimension reduction space 

We also track the process of algorithm. Take Bing 

Liu as an example, 51 distinct sets of publication can 

be get according to different set of associated co-

authors. But finally, there are only 11 different persons 

named Bing Liu in the dataset. It shows that although 

author relationship feature can achieve high precision, 

recall is too low in many name set. The second step of 

clustering can boost recall of final result.  

6.4.4. Atomic cluster finding 

 

Fig.5 Performances of using different features 

We conducted an experiment to evaluate the 

performance of the atomic cluster finding. We tested 

the approach with different types of features. Figure 5 

shows the performances with different features. We see 

that averagely the co-author features result in the best 

performance in terms of both precision and recall. But 

sometimes, the title features seem to useful. For 

example, for “Bing Liu”, the precision and recall of 

using co-author features are “1.00” and “0.39”, 

respectively; while using title features, the precision 

and recall are “0.63” and “0.59”. The title features can 

greatly improve the recall in this case. With the 

publisher features only, we can achieve a high 

precision but very low recall. 

7. Conclusions 
In this paper we have investigated the problem of 

name disambiguation. We have proposed an approach 

of using atomic clusters to improve the performance of 

name disambiguation, and presented two 

implementations by extending two basic clustering 

methods. We applied the approach to a real-world 

dataset from ArnetMiner.org. Experimental results 

show that our approach of using atomic clusters 



finding for name disambiguation can performs 

significantly better than baseline clustering methods.  

Experiments also unveil that co-author features are the 

most important features when generating the atomic 

clusters.  
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