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E-Commerce Platform

Yukuo Cen, Jing Zhang?, Gaofei Wang, Yujie Qian, Chuizheng Meng, Zonghong Dai, Hongxia Yang,
Jie Tang?, Senior Member, IEEE

Abstract—This paper introduces how to infer trust relationships from billion-scale networked data to benefit Alibaba E-
Commerce business. To effectively leverage the network correlations between labeled and unlabeled relationships to predict trust
relationships, we formalize trust into multiple types and propose a graphical model to incorporate type-based dyadic and triadic
correlations, namely eTrust. We also present a fast learning algorithm in order to handle billion-scale networks. Systematically,
we evaluate the proposed methods on four different genres of datasets with labeled trust relationships: Alibaba, Epinions, Ciao
and Advogato. Experimental results show that the proposed methods achieve significantly better performance than several
comparison methods (+1.7-32.3% by accuracy; p << 0.01, with t-test). Most importantly, when handling the real large networked
data with over 1,200,000,000 edges (Ali-large), our method achieves 2,000× speedup to infer trust relationships, comparing with
the traditional graph learning algorithms. Finally, we have applied the inferred trust relationships to Alibaba E-commerce platform:
Taobao, and achieved 2.75% improvement on gross merchandise volume (GMV).

Index Terms—Social network; Trust relationship prediction
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1 INTRODUCTION

E-Commerce platform has led to a fundamental change
in the way that businesses interact with their customers.
Almost all the famous platforms, such as Taobao1 and
Amazon2, try to attract new customers or keep existing cus-
tomers by developing sophisticated strategies to recommend
products. Traditional recommendations usually use content-
based, collaborative filtering-based or hybrid methods. All
these methods essentially categorize users/products into
different groups and make recommendations based on the
grouping information. However, a recent survey shows that
84% consumers’ purchase behaviors are strongly influ-
enced by friends’ behaviors or friends’ recommendations3.
Leveraging the trust relationships between customers can
significantly help E-Commerce. This actually has been
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demonstrated by social recommendation [11], [21], [31],
[42], which suggests that the recommendation performance
can be significantly improved with trust relationships. How-
ever, social recommendation does not present successful
applications in industry. For example, according to IBM’s
Black Friday report [1], social networks including Face-
book, Twitter and YouTube only contribute 0.34% of all
online sales on Black Friday. One of the big challenges
for applying social recommendation to many E-Commerce
platforms is that most of the trust relationships are un-
available. Online social networks such as Facebook and
Twitter record many different types of social relationships,
but not all relationships are trustful. Trust relationships
often hide in the large number of online social relationships
or sometimes are missing in some networks, e.g., family
relationship may not exist in a professional social network.
Thus, questions that arise are: can we leverage users’
behavior log to infer trust relationships between users?
How can the inferred trust relationships finally help product
recommendations in E-Commerce system?

In this paper, we aim to systematically study the problem
on Taobao, the E-Commerce platform of Alibaba. Taobao
has more than 500,000,000 users and is one of the largest E-
Commerce platforms in the world — merely on 11/11/2017,
the sales within 24 hours reach 25 billion US dollar. Specif-
ically, we target at inferring trustful relationships between
users in Taobao. Figure 1 shows an example to illustrate
the problem that we are dealing with. The user behavior log
we have collected to study the problem consists of a large
number of user behaviors such as purchase history, mobile
records, GPS information, etc. We have some relationships
annotated with different types of trust or distrust by users or
annotators. The goal is to infer all the other trust and distrust
relationships. One intuitive way is to train a supervised
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Fig. 1. Illustration of trust relationship prediction in
social networks.

model by viewing each relationship as an instance. For
example, in Figure 1, Mary and Mike always stay at the
same location at night, which implies that they might be
family relationship. However, on the Alibaba E-Commerce
platform, we found that the real challenges lie in:

• Limited labeled relationships. In most cases, we only
have a small number of labeled relationships, but all
the other relationships are unlabeled. It is necessary
to design a principled framework to learn with both
limited labeled and large unlabeled relationships.

• Billion-scale network. The scale of the networked
data is big with billions of nodes and edges. How to
scale up the algorithm to handle such billion-scale data
is a challenging issue.

• Validation. It is infeasible to directly evaluate the
performance of inferred trust relationships on such a
big network.

This paper investigates how to effectively leverage net-
work correlations to infer trust relationships when a large
number of neighboring relationships are unlabeled. To
address the challenge of limited labeled relationships, semi-
supervised learning such as label propagation [43] could
help, by iteratively propagating trust scores from labeled
relationships to unlabeled relationships. However, direct
propagation is not always effective, due to the complex
semantics of trust relationships. For example in Figure 1,
Mary may not know Ruby’s colleague Lucy, let alone trusts
Lucy. In summary, the contributions of the work can be
summarized as:

• We categorize trust into fine-grained types, and inves-
tigate potential useful correlations. We have discov-
ered several intriguing correlation patterns (type-based
dyadic and triadic correlations).

• Incorporating the discovered type-based dyadic and
triadic correlations into a factor graph model, we
propose eTrust, which significantly improves the infer-
ring accuracy (+1.7-32.3% ) against the state-of-the-art
methods.

• To scale up eTrust to handle billion-scale networks, we
propose eTrust-s, which achieves > 2000× speed-up
than eTrust, with comparable accuracy performance.

• We have applied the inferred trust relationships to two
Alibaba online products—Taobao product search and

Taobao product discovery. Online A/B test shows that
the proposed method can greatly improve the gross
merchandise volume (GMV) by +2.75%.

2 EXISTING METHODS EXPLORATION

In this section, we explore possible solutions and analyze
their limitations.

Unsupervised Methods. Unsupervised methods usually
leverage network structures to estimate a trust score be-
tween two users. State-of-the-art methods such as Trust
Propagation (TP) [10] and TidalTrust (TT) [8] propagate
trust scores along edges in a network. A number of unsuper-
vised link prediction approaches such as Common Neigh-
bors (CN), Adamic/Adar (AA) and Jaccards Coefficient
(JC) [17] can also be used to estimate trust scores. These
methods avoid iterative propagation, but only aggregate
trust scores from direct neighbors. Recent graph embedding
methods such as DeepWalk (DW) [25] can also be used
to first learn an embedding vector for each user and then
calculate the trust score as dot product of two vectors.

Unsupervised methods highly depend on the network
comprised of existing trust relationships. However, on the
Alibaba platform, we only collected a small number of
labeled relationships, and the connectivity of the formed
network is quite poor (Graph density is only 3.13E-6),
which makes it difficult to propagate trust scores.

Supervised Methods. Supervised methods such as logistic
regression (LR) [7] train a multi-label classifier to predict
the label of a relationship based on the features extracted
from heterogeneous user behaviors. Related work of trust
relationship prediction include [13], [19], [24]. Supervised
methods for link prediction such as local Markov Random
Field [38], supervised random walk [4] and a framework
that incorporates all the unsupervised metrics as features
into a supervised model [18], can also be leveraged to
predict trust. Alibaba has advantaged extra sources to
extract rich attribute features, in addition to the network
comprised of labeled relationships. Thus compared with
unsupervised methods, supervised methods can be applied
to users with few labeled relationships. A few works extract
features from network structure and incorporate them into
a supervised model. For example, to predict positive and
negative relationships, Leskovec et al. define triadic corre-
lation features according to the theories of social balance
and social status [16], [15]. Unfortunately, the sparsity of
the labeled relationships on Alibaba’s dataset impacts the
effect of the correlation features, which are only extracted
from the labeled network.

Semi-supervised Methods. Semi-supervised methods can
incorporate the unlabeled relationships to predict trust.
For example, Label Propagation (LP) [43] begins from
the initially collected labels, and propagates trust scores
along the network. LP is originally proposed to infer the
labels of nodes. To adopt LP to predict trust, we can
transform each relationship into a node, and build an edge
between two nodes if their corresponding relationships
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TABLE 1
Summarization of related methods. Notation tij is the trust score between user vi and vj , Vi denotes the neighbors of

vi, f is a real-valued function to estimate the trust score of a relationship ei and yi is the label of ei.

Method Equation Explanation
CN [17] tij = |Vi ∩ Vj | The number of common neighbors between vi and vj .

AA [3] tij =
∑

vk∈Vi∩Vj

1
log(d(vk)+1)

Weight rarer neighbors more heavily by 1
log(d(vk)+1)

and d(vk) is

the degree of vk .
JC [27] tij = |Vi ∩ Vj |/|Vi ∪ Vj | The Jaccard similarity between vi and vj .
DW [25] tij =< ~vi, ~vj > ~v is learned by DeepWalk based on network structures.

TP [10] T̃ = (α1T + α2TTT + α3TT + α4TTT )k
T is the initial trust matrix and T̃ is the trust matrix after the k-th
propagation.

TT [8] tij =
∑
k∈Vi∧tik>r tiktkj/

∑
k∈Vi∧tik>r tik r is a threshold value to select the most trusted neighbors.

LR [7] f(xi) = 1/(1 + exp{−αT xi})
xi is the attribute vector of ei and α is the corresponding weighting
vector.

LP [43] E(f) = 1
2

∑
i,j ωij(fi − fj)2

ωij indicates the similarity score of ei and ej , and E is the energy
function.

share a common user. The objective function is defined as
E(f) = 1

2

∑
i,j ωij(fi − fj)2, where ωij is the similarity

score of two relationships ei and ej , which is calculated
as the dot product of their attribute vectors xi and xj .
Notation f is a real-valued function f : E → R. The
initial value of fi equals 1 if ei is trustful, fi = −1 if ei
is distrustful, and fi = 0 if ei is unlabeled. Essentially,
the value of f at each unlabeled relationship is the average
of f at neighboring relationships, and f at each labeled
relationship is constrained to take its initial value after each
iteration. Label Spreading (LS) [41] smooths the value of
f by its initial value at each iteration. LP and LS both
assume that the classified labels should not change too
much between nearby nodes. But the transitivity of trust
may not be established under some scenarios when multi-
typed semantics of trust is considered.

Recently proposed semi-supervised graph convolu-
tional/attention models [12], [37] represent a node’s embed-
ding by performing convolutional operations on its neigh-
bors’ embeddings and predict nodes’ labels based on their
embeddings. However, they suffer from the same transitiv-
ity assumption as LP/LS and the input of a large network
prevents efficient mini-batch training. Tang et al. [36], [33]
and Lou et al. [20] formalized the social balance theory into
triadic correlation factors and incorporated them into factor
graphical models to predict links. However, they did not
discuss the situations when the relationships have multiple
types and also thoroughly ignored the dyadic correlations
between relationships. Table 1 summarizes the details of
the major related methods.

3 DYADIC/TRIADIC CORRELATIONS

In this section, we present the dyadic and triadic correlation
patterns discovered from the collected Alibaba dataset.

The semantics of trust is complex, with different inter-
pretations in different contexts [2]. For example, in an E-
Commerce platform, people may trust their acquaintances
to buy their recommending products, while in Advogato,
an online social networking site dedicated to free software

TABLE 2
Statistics of dyadic and triadic correlation patterns

(Y-axis: log scale).
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development, people may only trust technical experts. In
this paper, we define trust relationships according to the
social theory of Dunbar number [22]. Specifically, people
typically have a few ultra-close family members, followed
by less cozy companions including classmates and col-
leagues, and other acquaintances at more distance or friends
except the former three types. Formally, we categorize the
trust semantics of a relationship into four types, i.e., T ={Fa,
Cl, Co, Kn}, where Fa denotes family, Cl is classmate, Co
is colleague and Kn means other known relationships or
friends except the former three types. We use notation O to
represent the type of distrust relationships. This definition
also refers to the statements that the social ties which we
have with other people in social networks usually include
our families, colleagues, classmates and friends [28] and
those social ties build trust between people [26]. Following
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TABLE 3
Notations.

SYMBOL DESCRIPTION

T ={Fa, Cl, Co, Kn}
The type of trust relationships. Fa, Cl, Co
and Kn are family, classmate, colleague and
friend respectively.

O The type of distrust relationships

EL and EU EL and EU are labeled and unlabeled rela-
tionships respectively.

Y Land Y U Y L are the labels of EL and Y U are the
labels of EU to be inferred.

X The relationship attribute matrix.
∧ij Two neighboring relationships ei and ej

4ijk
Three neighboring relationships ei, ej and
ek in a triadic structure.

this definition, the problem of trust relationship prediction
is simplified as predicting the four types of relationships
between users.

Now we introduce how to derive a social network from
the E-Commerce data, as many E-Commerce platforms
do not really have a social network. We construct the
social network by considering two aspects, interaction and
homophily. Interactions between users include the commu-
nication times by mobile, the comment and chat times by
social tools and so on. Homophily [14], [29] is represented
as the similarity between user attributes or behaviors, such
as the number of same visited locations, the number of
same purchased products and so on. We build a relationship
between two users if they have more than τ interactions or
if the homophily is larger than threshold µ, where τ and
µ are heuristic parameters that can be tuned according to
different datasets. We set the thresholds to reserve the most
possible candidate trust relationships and also avoid the
explosion of the relationships in the network. In this way,
we can derive a network G = (V,E), where V is the set of
users and E ⊂ V ×V is the set of relationships. Some trust
relationships can be easily identified based on the types
of interactions, and some relationships can be annotated
manually according to their attribute or behavioral patterns.
For example, if two users always stay at the same location
at night, it is highly probable that they are family, while
they are quite likely to be colleagues if they always stay at
the same location in working hours. Thus we could have
a small portion of labeled relationships. To summarize, the
input of our problem can be defined as:

Definition 1: Partially labeled attribute augmented
network: A partially labeled attribute augmented network
is a network with the relationships partially labeled. We
denote the network as G = (V,EL, EU , Y L,X), where
EL is the set of labeled relationships with Y L as the
corresponding labels, and EU is the set of unlabeled
relationships satisfying EL∪EU = E and EL

⋂
EU = ∅.

Notation X denotes an attribute matrix associated with
the relationships in E, where each row corresponds to a
relationship ei, each column represents an attribute feature,
and an element xid denotes the value of the d-th attribute
of ei.

Based on the labeled relationships in the derived net-

work G, we conduct an analysis on network correlations
between neighboring relationships and present the results
in Table 2, where in each dyadic or triadic structure, the
solid edges represent the observed neighboring relation-
ships with labels, and the dashed edges are the relationships
to be investigated. For each dyadic or triadic structure, we
present the probability of the relationship to be investigated
belonging to one of the four trust types in T or the distrust
type in the bar graph. We consider the triangle structures
the most in our network, as the influence weakens and
the computational burden increases when the length of the
relationship path increases. The experiments also verify that
the dyadic and triadic structures can obtain best accuracy
and efficiency performance when predicting trust.

We observe that in most triadic structures, the type of
a relationship is very likely to be the same with one of
the other two relationships. An exception occurs when two
neighboring relationships are both colleagues (Co), while
the third one is most likely to be a distrust relationship.
This may due to the reason of frequent job-hopping.
We also find that in dyadic structures, two neighboring
relationships have a high probability to be the same type.
This is because different types of labeled relationships were
collected separately from different groups of users, and may
cause the clustering of the relationships with same labels.
We also conduct the same analysis on Epinions and Ciao —
two product review sites that allow users to create explicit
trust relationships with others. There are only binary types
of relationships in the two datasets. i.e., trust and distrust
relationships. We find that the types of two neighboring
relationships do not have close correlation (In a dyadic
structure, when one relationship is trustful, the probability
of the other relationship being trustful is only around 50%).
However, the transitivity assumption of trust can be strongly
verified (i.e., it is very likely to deduce A trusting C when
A trusts B and B also trusts C).

In summary, in different networks, we can not unit-
edly assume the neighboring relationships tend to be the
same types. Besides, under the scenarios when multi-
typed semantics of trust is considered, we cannot make
the assumption of transitivity of trust. In another word,
different network correlation factors exert different effect
on predicting trust in different networks. We automatically
learn the contributions of different factors by model itself
instead of making certain assumptions. The major notations
used in the paper are summarized in Table 3.

4 THE PROPOSED MODELS

Unsupervised methods suffer from sparse connections
among labeled relationships. Supervised methods capture
rich attribute features, but ignore network structures due to
the same reason. Semi-supervised methods leverage both
labeled and unlabeled relationships, but the transitivity
assumption of trust is not always established when trust is
multi-typed. Considering all the the limitations, we propose
two models to incorporate the discovered dyadic and triadic
correlations between labeled or unlabeled relationships to
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Algorithm 1: eTrust
Input: Network G = (V,EL, EU , Y L,X), learning rate η
Output: Learned parameters θ = {α, β, γ}
Initialize θ ;1
repeat2

Calculate each p(yi), p(yi, yj) and p(yi, yj , yk) by3
LBP;
Calculate each p(yi), p(yi, yj) and p(yi, yj , yk)4
conditioned on the observed labels by LBP;
Calculate the expectations by Eq. (9) ;5
Calculate the gradients of θ according to Eq. (8);6
Update parameters θ with the learning rate η:7

θnew = θold − η∇θ
until Convergence;8

predict trust on Alibaba E-Commerce platform, namely
eTrust and eTrust-fast (abbreviated as eTrust-s).

4.1 Problem Formulation
Our problem can be formalized as:

Problem 1: Trust relationship prediction on Billion-
scale Network. Given a partially labeled attribute network
G = (V,EL, EU , Y L,X), the objective of trust relationship
prediction is to learn a predictive function

f : G = (V,EL, EU , Y L,X)→ Y (1)

that can be used to predict the type yi for each unlabeled
relationship ei ∈ EU where yi is a value in T ∪ {O} with
O represents distrust. Notation Y = {yi}|E|i=1 represents the
label set of all the relationships.

It is worth noting that as the prediction is performed
on a billion-scale network, it is infeasible to first learn a
model from the huge network and then apply it to the huge
network again. Learning and prediction should be done in a
unified and efficient way. Finally, the relationships that are
predicted into one type of T are collected as the discovered
trust relationships.

4.2 eTrust
The basic idea of eTrust is to incorporate the type-based
dyadic and triadic correlations as factors into a factor
graphical model. We transform the original node-oriented
network into a relation-oriented network (i.e., line graph)
by formalizing each relationship as a node, and adding an
edge between two nodes if their corresponding relationships
in the original network share a common user. Given a line
graph G, we factorize the joint distribution over the label set
Y of all the relationships in G into a product of factors, with
each factor representing a function of a set of variables,
where a variable indicates the attribute vector or the label
of a relationship in the graph:

p(Y |G) =
1

Z

∏
ei

f(yi, xi)
∏
∧ij

g(yi, yj)
∏
4ijk

h(yi, yj , yk), (2)

where f(yi, xi) is the factor function corresponding to
a relationship ei, which represents the correlation be-
tween ei’s label yi and the attribute vector xi; Notation
g(yi, yj) denotes the factor function corresponding to two
neighboring relationships ei and ej

4, which represents
the correlation between the two relationships. Notation
h(yi, yj , yk) denotes the factor function corresponding to
three relationships ei, ej and ek in a triadic structure5,
which represents the correlation between the three relation-
ships. Notation Z denotes the global normalization term
that adds up the products of the factor functions over
all possible configurations of the relationships’ labels, i.e.,
Z =

∑
Y

∏
ei
f(yi, xi)

∏
∧ij

g(yi, yj)
∏
4ijk

h(yi, yj , yk).
We introduce the details of the factor functions as follows.

Factor Functions. The attribute factor function f(yi, xi)
is related to both the label and the attribute vector:

f(yi, xi) = exp{αTφ(yi, xi)}, (3)

φ(yi, xi) = (1yi=Faxi,1yi=Clxi, 1yi=Coxi, 1yi=Knxi,1yi=Oxi)T ,

where xi is a D-dimension attribute vector, 1yi=Fa is the
indicator function with value as 1 when yi = Fa and
0 otherwise. Then 1yi=Faxi equals xi when 1yi=Fa = 1
and a zero vector 0 otherwise. The vector φ(yi, xi) and
the weighting vector α are both 5 × D-dimension vector.
For example, when yi = Fa, φ(yi, xi) = (xi, 0, 0, 0, 0).
The attribute vector xi contains the features extracted
from the aspects of interactions, homophily [14], [29] and
social influence [5], [9] to indicate whether two users trust
each other or not. Interactions denote the frequency of
interactions between users such as the communication times
by mobile. Homophily reflects the similarity of two users
such as age, gender or the number of the same products
purchased. Social influence occurs when one’s behaviors or
opinions are affected by others, which is simply quantified
by the frequency that one user performs a same behavior
after another user.

The dyadic factor function g(yi, yj) and the triadic factor
function h(yi, yj , yk) are respectively defined as:

g(yi, yj) = exp{βTψ(yi, yj)}, (4)

h(yi, yj , yk) = exp{γT ζ(yi, yj , yk)},

where β and γ are the weighting vectors, and ψ and ζ are
vectors of dyadic and triadic correlation feature functions
respectively, with each feature function in them defined as:

ψa,b(yi, yj) =

{
1 yi = a, yj = b;
0 otherwise, (5)

ζa,b,c(yi, yj , yk) =

{
1 yi = a, yj = b, yk = c;
0 otherwise,

where a, b and c represent specific relationship types and
they can be any trust type in T = {Fa,Cl,Co,Kn} or the

4. We represent two neighboring relationships as ∧ij .
5. We represent three relationships in a triadic structure as 4ijk .
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Fig. 2. Illustration of eTrust. Each relationship between
two users is corresponding to a feature vector x and a label
variable y. Attribute factor function f is defined on x and
y; dyadic correlation function g is defined between the label
variables of two neighboring relationships; tradic correlation
function h is defined between the label variables of three
neighboring relationships in a triadic structure.

distrust type. So ψ = (ψFa,Fa, ψFa,Cl, ψFa,Co, ψFa,Kn, · · · ) is
actually a one-hot vector with only one dimension as 1.
For example, when yi = Fa and yj = Co, ψ(yi, yj) =
(0, 0, 1, 0, · · · ). Vector ζ can be similarly explained. The
order of a, b, and c that are assigned to yi, yj and yk does
not impact the results, because the fine-grained trust seman-
tics Fa, Cl, Co and Kn indicate undirected characteristics of
trust relationships. Based on the 4 defined trust types and
1 distrust type, there are

(
5
1

)
+
(
5
2

)
= 15 dyadic correlation

features and
(
5
1

)
+ 2 ∗

(
5
2

)
+
(
5
3

)
= 35 triadic correlation

features in total, where different relationships in a dyadic
or triadic structure can be assigned a same type. We take
part of the social network in Figure 1 to illustrate how the
factor graphic model—eTrust is constructed in Figure 2.

Model Learning. We learn model parameters by maxi-
mizing the log-likelihood function of all the labeled rela-
tionships:

O(α, β, γ) = logP (Y L|G) = log
∑
Y |Y L

P (Y |G) (6)

By plugging Eq. (2) into the above equation, we obtain

O(α, β, γ) = log
∑
Y |Y L

exp[
∑
ei

αTφ(yi, xi) (7)

+
∑
∧ij

βTψ(yi, yj) +
∑
4ijk

γT ζ(yi, yj , yk)]

− log
∑
Y

exp[
∑
ei

αTφ(yi, xi)

+
∑
∧ij

βTψ(yi, yj) +
∑
4ijk

γT ζ(yi, yj , yk)]

We use gradient descent algorithm to learn the parame-
ters θ = {α, β, γ}. The gradient of γ is as follows (Other
gradients can be calculated in the same way):

∂O
∂γa,b,c

= Ep(Y |Y L)

∑
4ijk

ζa,b,c(yi, yj , yk) (8)

− Ep(Y )

∑
4ijk

ζa,b,c(yi, yj , yk),

where Y |Y L denotes a labeling configuration Y of
all the relationships given the observed labels Y L

and p(Y |Y L) is the corresponding probability. Nota-
tion Ep(Y |Y L)

∑
4ijk

ζa,b,c(yi, yj , yk) denotes the expec-
tation of the summation of a triadic correlation fea-
ture ζa,b,c(yi, yj , yk) given the label distribution over all
the unlabeled relationships conditioned on the labeled
ones, and Ep(Y )

∑
4ijk

ζa,b,c(yi, yj , yk) is the expecta-
tion of the same feature given the label distribution
over all the relationships. We can rewrite the expectation
Ep(Y )

∑
4ijk

ζa,b,c(yi, yj , yk) as:

Ep(Y )

∑
4ijk

ζa,b,c(yi, yj , yk) =
∑
Y

p(Y )
∑
4ijk

ζa,b,c(yi, yj , yk) (9)

=
∑
4ijk

∑
yi,yj ,yk

ζa,b,c(yi, yj , yk)p(yi, yj , yk)

Eq. (9) indicates that, to calculate the expectation, we
need to know the marginal probability p(yi, yj , yk). Loopy
Belief Propagation (LBP) [23] is one popular approximate
algorithm to calculate the marginal probabilities in a graph-
ical structure. The key idea is to define a sum-product
update rule to pass messages between the factor nodes
and the variable nodes in a factor graph and calculate the
marginal probability of a variable node as the product of the
messages passing to it. Algorithm 1 presents the algorithm
details. At the beginning, we perform LBP to obtain all
the demanded marginal probabilities p(yi), p(yi, yj) and
p(yi, yj , yk) (Line 3) and perform LBP again to obtain
those marginal probabilities conditioned on the observed
labels (Line 4). Then we calculate the expectations based
on the marginal probabilities by Eq. (9) (Line 5). Finally we
compute the gradients based on the expectations by Eq. (8)
(Line 6) and update the parameters by the gradients (Line
7). Thus, LBP inference of marginal probabilities is the
prerequisite of gradient update in each iteration.

Inferring Unlabeled Trust Relationships. Based on the
learned parameters θ, we can predict the unlabeled trust
relationships by finding a label configuration that maxi-
mizes the joint probability of both labeled and unlabeled
relationships using LBP, i.e., Y ∗ = argmaxY |Y Lp(Y |G, θ).

4.3 Fast Learning for eTrust
The proposed eTrust is inefficient when the input network
is large, due to LBP process. LBP is an iterative process
and needs to enumerate all possible label configurations for
all the relationships, dyadic structures and triadic structures
at each iteration. Thus, the time complexity of LBP process
is proportional to O(ILBP (NT +MT 2 +WT 3)), where
ILBP is the iterative times of LBP, N , M and W are
the number of relationships, dyadic structures and triadic
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structures respectively, and T is the number of types in T
plus the distrust type. By further considering the outermost
iteration I , the whole time complexity of Algorithm 1 is
proportional to O(IILBP (NT+MT 2+WT 3)). We further
propose eTrust-s, which is much more efficient than eTrust,
but can incorporate the same factors. eTrust-s tries to avoid
calculating the marginal probability p(yi, yj) for a dyadic
structure and p(yi, yj , yk) for a triadic structure. The key
challenge is at each iteration, the labels of the neighboring
relationships in those structures are all unknown, making
the computation of the marginal probability of each rela-
tionship interdependent. To separate these, when calculating
the marginal probability of a relationship’s label yi, we
assume the labels of its neighboring relationships YNi are
known, where Ni denotes the neighbors of relationship ei.
The solution is to use the inferred labels of last iteration as
their values at this iteration. Essentially, eTrust-s calculates
p(yi|ŶNi

) instead of p(yi, yj) and p(yi, yj , yk), where the
notations with ˆ are the inferred labels. Thus, the log-
likelihood function of eTrust-s is defined as:

O(θ) =
∑
ei

(αTφ(yi, xi) +
∑
∧ij

βTψ(yi, ŷj) (10)

+
∑
4ijk

γT ζ(yi, ŷj , ŷk)− logZi),

where Zi is a local normalization term over the value of yi
instead of a global normalization term over the values of all
the relationships in eTrust, because given the labels of all
the neighboring relationships ŶNi , the marginal probability
p(yi|ŶNi) of ei is independent from other relationships.
Specifically, Zi is represented as:

Zi =
∑
yi

exp{αTφ(yi, xi)}+
∑
yi

exp{
∑
∧ij

βTψ(yi, ŷj)}

+
∑
yi

exp{
∑
4ijk

γT ζ(yi, ŷj , ŷk)}. (11)

Then β is calculated using gradient descent method
(Parameters α and γ are calculated in the same way):

∂O
∂βa,b

=
∑
ei

(
∑
∧ij

ψa,b(yi, ŷj) (12)

−
∑
y′i

p(y′i|ŶNi)
∑
∧ij

ψ(y′i, ŷj)),

where p(yi|ŶNi) is instantiated as:

p(yi|ŶNi) =
exp

∑
∧ij

βTψ(yi, ŷj)∑
y′i

exp
∑
∧ij

βTψ(y′i, ŷj)
. (13)

Algorithm 2 presents the learning process of eTrust-s.
We initialize β and γ randomly (Line 1) and initialize α as
the optimized parameter when only considering attribute
features in Eq. (3) (Line 2). We divide the labeled rela-
tionships into batches {EL

k }Bk=1 (Line 3) and iteratively
process the randomly shuffled batches (Line 4, 5 and
6). For each selected batch, we infer the labels for all
the unlabeled neighboring relationships of each labeled

Algorithm 2: eTrust-s
Input: Network G = (V,EL, EU , Y L,X), learning rate η
Output: Learned parameters θ = {α, β, γ}
Initialize β and γ randomly;1
Initialize α through optimizing Eq. (3);2
Divide labeled relationships into batches {ELk }Bk=1;3
for epoch l=1 to L do4

Shuffle batches {ELk }Bk=1;5
foreach ELk ∈ EL do6

Infer {yj |yj ∈ Y U ∩ ej ∈ Ni ∩ ei ∈ ELk } by the7
model with current parameters θ;
Calculate the correlation features (Eq. (5)) for each8
ei ∈ ELk given the inferred labels of its neighbors
ŶNi ;
Calculate the gradients of θ and update the9
parameters by θnew = θold − η∇θ;

relationship (i.e., {yj |yj ∈ Y U ∩ ej ∈ Ni ∩ ei ∈ EL
k })

by current model (Line 7), and calculate the correlation
features defined in Eq. (5) for each labeled relationship
given the inferred labels of its neighboring relationships
ŶNi

(Line 8). Essentially, we count the frequency of all
kinds of correlation features for each labeled relationship.
Finally, we update parameters θ on the current selected
batch of labeled relationships EL

k (Line 9). The time
complexity of calculating correlation features in eTrust-s
is only O(N +M +W ). Thus, the whole time complexity
is reduced from O(IILBP (NT +MT 2+WT 3)) in eTrust
to O(I(N +M +W )) in eTrust-s. When T = 5, eTrust-
s can almost achieve 125× speed up. Additionally, as the
iterative times of LBP—ILBP is avoid and the outermost
iteration I of eTrust-s is much smaller than that of eTrust
(The experimental results show that eTrust-s can converge
in at most 50 iterations, but eTrust usually needs hundreds
of iterations to converge), the speedup of eTrust-s is far
more than 125×. After model training, we get the labels of
all the unlabeled relationships Y U at the same time.

Distributed Learning. By eTrust-s, the computation of a
batch of data can be easily distributed. The algorithm con-
tains two key operations for each batch. The first operation
is, for each labeled relationship in a batch, we infer the
labels of its neighboring relationships and then calculate
its correlation features based on the inferred neighboring
labels. To distribute this operation, we save the whole
network in an adjacent matrix with each row indicating a
relationship and all its neighboring relationships, and then
distribute the rows of the adjacent matrix into different
machine nodes. In this way, no information is lost, as the
dyadic and triadic correlation features are formed by a
relationship and its neighboring relationships, which are all
kept in the same machine node. The second operation is to
calculate the gradients of the model parameters based on
the batch of data, which is independent among the labeled
relationships, and can also be distributed easily. In real
implementations, we distribute eTrust-s in ODPS, a large
distributed computation platform of Alibaba inc..
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TABLE 4
Dataset statistics. Notation |V |, |E| and |EL| denote the
number of users, relationships and labeled relationships

respectively. Notation D = 2|E|
|V |(|V |−1)

denotes graph density.

Dataset |V | |E| |EL| D

Alibaba 86,550 202,624 59,613 5.41E-5
Ali-large 28,435,081 1,264,260,801 59,613 3.13E-6
Epinions 812 44,240 44,240 0.134

Ciao 1,014 66,326 66,326 0.129
Advogato 3,189 16,594 16,594 3.00E-3

TABLE 5
Efficiency performance(CPU time of model learning,

s:seconds, m:minutes, h:hours).

Dataset eTrust eTrust-s Speedup
Alibaba 16.70h 27.27s 2205×
Epinions 97.30m 1.49s 3918×

Ciao 72.60m 2.33s 1870×
Advogato 32.90m 0.90s 2193×

5 EXPERIMENT

5.1 Experimental Settings
5.1.1 Datasets
We mainly evaluate the proposed methods on the collected
Alibaba’s dataset.

Alibaba: According to the method about how to derive a
network in Section 3, We collected 28,435,081 active users
from Alibaba’s platform and built 1,264,260,801 relation-
ships among them. The dataset is named as Ali-large. Then
we identify or annotate labels for 59,629 relationships,
which include 9,580 Fa, 10,066 Cl, 10,166 Co, 10,031
Kn and 19,770 O types of relationships (Cf. Section 3 for
details of how to derive the network).

In order to execute all the comparison methods in
available time, we extract a small network Alibaba from
Ali-large by expanding the neighbors of all the users
that are included in the annotated 59,629 user pairs (i.e.,
relationships), and result in 86,550 users and 202,624
relationships among all these users. We extract the dataset
as above to make the dyadic and triadic structures of
the labeled relationships complete enough to verify the
effects of dyadic/triadic correlations. Alibaba has the same
amount of labeled relationships with Ali-large, except that
the unlabeled relationships are reduced. We only learn and
predict the trust relationships in Ali-large by the efficient
method eTrust-s, and indirectly evaluate them by online real
applications of Aibaba Group instead of direct evaluation
in terms of precision, recall and F1.

To further verify the generalization of the proposed
methods, we also evaluate on three other datasets:

Epinions [30]: Epinions is a product review site. Users
can rate the products by 1 to 5 scores, and can also create
trust relationships with others. Each rating contains user
name, product name, product’s category and rating score.
The trust relationships in Epinions are directed, which
indicates that A trusting B may not deduce B trusting A.
Besides, we only collect binary labels for its relationships.

Ciao [30]: Ciao is also a product review site. Users can
also rate products and create trust relationships with others.
The relationships are also directed and the labels are binary.

Advogato6: Advogato is a community and social net-
working site of free software developers, where developers
share their developing skills and raters will rate them
with three trust levels—Apprentice, Journeyer and Master.
Apparently, the relationships are directed.

Essentially, trust semantics is flexible and can be defined
as binary or multiple, directed or undirected, depending on
the real applications. In E-Commerce applications, the trust
relationships are more like acquaintances, which are natu-
rally undirected, and the semantics can be multiple types.
But in the rating sites Epinions and Ciao and the expert
site Advogato, trust relationships are more like “celebrating
following” relationships and are directed. Such directed
trust elationships can also be exemplified by the advisor-
advisee relationships in academic networks [35]. To define
correlation features upon the directed trust relationships, we
only consider the directed triangle structure “A trusts B, B
trusts C, and A trusts C”, as transitivity is one of the basic
properties of trust [32]. Then we ignore the directions and
define the correlation features according to Eq. (5).

To define attribute features, since we only collected a
network in Advogato, we define attribute features as the
difference between degree, clustering coefficient, closeness
or pagerank scores of two users, etc. We also extract
attribute features from the rating log such as the number of
same products rated by two users in Epinions and Ciao. On
the dataset of Alibaba, we have rich user behavior data and
can define multiple types of user interactions, homophily
and social influence as attribute features. Since we only
collected binary-typed relationships in Epinions and Ciao,
we conduct binary classification on Epinions and Ciao
(i.e., reduce eTrust and eTrust-s into binary classifiers), and
conduct multiple classification on Advogato and Alibaba.
Table 4 lists the statistics of the datasets, where Alibaba
is partially labeled, and Epinions, Ciao and Advogato are
completely labeled.

5.1.2 Comparison Methods
We compare unsupervised, supervised and semi-supervised
methods. The labeled relationships in the datasets are
divided into training and test set to learn and evaluate the
comparison methods.

Unsupervised Methods: include Common Neighbors
(CN) [17] which counts the common neighbors of two
users, Adamic/Adar (AA) [3] which is similar to CN but
weights a neighbor by its degree, Jaccard’s Coefficient
(JC) [27] which further considers the number of individual
neighbors, DeepWalk (DW) [25] which calculates cosine
similarity of two users based on their learned embed-
ding vectors, Trust Propagation (TP) [10] and TidalTrust
(TT) [8] which not only consider the number of direct
neighbors but also the high-order neighbors to calculate the
trust score between two users. When using the unsupervised

6. http://www.trustlet.org/wiki/Advogato dataset.
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TABLE 6
Prediction performance of the supervised and semi-supervised methods on four datasets (%).

Method Alibaba Epinions Ciao Advogato
Pre. Rec. F1 Acc. Pre. Rec. F1 Acc. Pre. Rec. F1 Acc. Pre. Rec. F1 Acc.

LR 64.59 61.57 62.59 62.85 53.00 98.40 68.90 55.34 59.63 80.52 68.52 62.96 43.40 32.02 33.15 37.68
SVM 66.95 65.82 65.64 66.58 81.69 69.73 75.24 76.93 74.09 69.44 71.69 72.55 42.06 42.07 39.53 42.10
RF 70.95 69.90 70.32 71.04 80.08 76.53 78.26 78.63 73.37 69.32 71.29 72.05 54.12 53.92 53.99 53.90
LP 91.90 86.49 88.81 77.16 77.97 74.97 76.44 76.77 71.72 69.60 70.64 71.05 70.48 29.68 41.51 33.26
LS 90.80 86.94 88.51 76.69 71.62 82.30 76.59 74.71 67.59 76.56 71.80 69.89 73.64 22.69 33.56 28.98

eTrust 86.55 91.73 89.01 87.37 81.62 78.55 80.06 80.33 79.66 80.29 79.98 79.88 55.02 57.32 56.13 59.36
eTrust-s 92.00 90.56 91.21 90.73 85.50 74.89 79.84 80.99 83.67 69.92 76.18 78.12 58.66 58.22 58.41 61.28

100 101 102

Top k% ranked relationships

0

20

40

60

80

100

Pr
ec

is
io

n 
(%

)

CN
AA
JC
DW

TT
TP
eTrust
eTrust-s

(a) Alibaba

100 101 102

Top k% ranked relationships

50

60

70

80

90

100

Pr
ec

is
io

n 
(%

)

CN
AA
JC
DW

TT
TP
eTrust
eTrust-s

(b) Epinions

100 101 102

Top k% ranked relationships

50

60

70

80

90

100

Pr
ec

is
io

n 
(%

)

CN
AA
JC
DW

TT
TP
eTrust
eTrust-s

(c) Ciao

100 101 102

Top k% ranked relationships

20

30

40

50

60

70

80

90

Pr
ec

is
io

n 
(%

)

CN
AA
JC
DW

TT
TP
eTrust
eTrust-s

(d) Advogato

Fig. 3. Precision at top k% of the unsupervised methods and our methods. X-axis: k (log scale); Y-axis: Precision.

methods, we cast our task as a ranking problem and evaluate
each trust type separately. Specifically, for each trust type,
we build a network including all the labeled relationships
of this type in the training set, based on which we estimate
a score by one of the above methods for each pair of users
in the test set and rank them based on their scores.

Supervised methods: include Logistic Regression (LR),
Support Vector Machine (SVM) and Random Forest (RF).
They all define the same attribute features as the proposed
methods. When using the supervised methods, we cast our
task as a classification problem. Specifically, for both the
labeled relationships in training data and test set, we ex-
tract the attribute features from the aspects of interactions,
homophily and social influence the same as the proposed
methods. Then we train a supervised model on the training
data and predict a label for each relationship in the test set.

Semi-supervised methods: include Label Propagation
(LP) [43] which propagates labels according to relation-
ships’ proximity, and Label Spreading (LS) [41] which
is similar to LP but uses initial values to smooth the
inferred values at each iteration. We build a line graph for
each trust type, propagate the trust scores from the labeled
relationships to the unlabeled relationships in the network.
Then we predict the type for a relationship in the test set
as the type with the maximal trust score.

Our methods: include eTrust and eTrust-s. They con-
sider both attribute features and dyadic and triadic cor-
relation features. Our methods can be viewed as semi-
supervised methods, as we use both the labeled and un-
labeled relationships. When we compare with the unsu-
pervised methods, for each trust type, we predict the
probability of this type for each relationship in the test set
and rank all the relationships based on their probabilities.

Hyperparameters. The threshold to select the most trusted

neighbors in TT is set to 0.1, and the parameter to balance
the initial values and inferred values in LS is set to 0.5.
We set batch size as 1000 and learning rate as 1.0 in the
proposed eTrust-s.

5.1.3 Evaluation Measures
To quantitatively evaluate the proposed methods, we con-
sider the following measurements.

Accuracy Performance. We use precision, recall, f1
and accuracy to evaluate the classification performance of
the supervised/semi-supervised methods. For Alibaba and
Advogato with multiple labels, we calculate the metrics
for each label, and use their unweighted means as the
combined metrics. To evaluate the ranking performance of
the unsupervised methods, we use precision at top k%,
where k changes from 1 to 10 with interval 1 and from 10
to 100 with interval 10, as the evaluation measure, which
is well-adopted to evaluate link prediction tasks [6], [18],
[39], [40]. For Alibaba and Advogato with multiple labels,
we evaluate the metric for each trust type separately.

Efficiency Performance. We use the execution time of
model learning to show the speedup of eTrust-s comparing
with eTrust.

Application. We apply the trust relationships inferred
from Ali-large into two real applications in Alibaba Group,
to demonstrate the effectiveness of the learning results.

The algorithms are implemented using C++ and all
experiments except those on Ali-large are performed on
an Enterprise Linux Server with 24 Intel(R) Xeon(R) CPU
cores (E5-2630 2.30GHz) and 100GB memory. The algo-
rithm performed on Ali-large is distributed and performed
on ODPS, a distributed platform in Alibaba Group. All
codes and part of the datasets are publicly available7.

7. https://github.com/cenyk1230/eTrust
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5.2 Performance Analysis

Accuracy Performance. Table 6 shows the overall pre-
diction performance of the supervised, semi-supervised and
proposed methods. In terms of accuracy, the proposed
eTrust and eTrust-s achieve 1.7-32.3% improvement over
all the baseline methods. Supervised methods including LR,
SVM and RF only consider the attribute features of the
labeled relationships but ignore the unlabeled relationships,
thus the network correlations between the relationships
cannot be incorporated. Semi-supervised methods LP and
LS leverage the network correlations between labeled and
unlabeled relationships, but perform almost the same as
the supervised method RF on Ciao, and even worse than
RF on Epinion and Advogato, because they ignore at-
tribute features. Nevertheless, they perform much better
than the supervised methods on Alibaba, because nearby
relationships are much more likely to be the same type on
Alibaba than on the other three datasets, which is more
compatible with the propagation assumption of LP and
LS. The proposed eTrust and eTrust-s not only consider
attribute features, but also incorporate all kinds of type-
based dyadic and triadic correlations between labeled and
unlabeled relationships as features, and outperform all
the baseline methods. Moreover, although eTrust-s infers
marginal probabilities of relationships’ types locally instead
of globally by eTrust, eTrust-s achieves a comparable
performance to eTrust on all the datasets.

Figure 3 presents the curve of precision at top k%
for unsupervised methods and the proposed methods. We
present the results of one trust type on Alibaba and
Advogato for instance. Our methods eTrust and eTrust-
s outperform all the unsupervised methods significantly.
Particularly, the precision of top k% of eTrust and eTrust-s
is close to 100% at the very beginning and then gradually
falls to the proportion of positive instances in the whole
test set with the increase of k. The results indicate that the
proposed methods can rank most of the positive instances
before the negative instances. However, the performance
of some baseline methods such as CN, AA, JC and TT
fluctuate a lot, especially on the datasets of Epinions and
Ciao, which indicates a lot of the positive instances are
ranked behind the negative instances at the beginning by
these methods. Thus the best performance is achieved late.
The improvement on Alibaba is much larger than that
on the other three datasets, because compared with the
networks of Epinion, Ciao or Advogato, Alibaba’s network
is extremely sparse (Graph density is only 5.41E-5), making
it particularly difficult for the unsupervised methods to
propagate trust scores along the network.

Efficiency Performance. We compare the efficiency per-
formance of eTrust and eTrust-s, and show the CPU time
required for model learning in Table 5. The proposed
eTrust-s typically achieves a significant reduction of CPU
time. On the four datasets, eTrust-s obtains a speedup from
1000+ to 3000+ times compared with eTrust.

Factor Analysis. We conduct an analysis on the ef-
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Fig. 4. Factor and convergence analysis.

fect of attribute features, dyadic correlation features and
triadic correlation features independently. The results in
Figure 4(a) show that network correlation features make
more contributions on predicting trust than attribute features
on all the datasets. We also find that the dyadic correlation
features take much more effect than the triadic correlation
features on Alibaba and Advogato, but the phenomenon
is different on Epinions and Ciao. This is because the
density of Alibaba and Advogato is 5.41E-5 and 3.00E-
3 respectively, which is much smaller than that of Epinions
and Ciao, whose density is 0.134 and 0.129 respectively.
Besides, Alibaba and Advogato have more relationship
types, leading to much more types of triadic structures.
Thus for each relationship in Alibaba and Advogato, the
available triadic correlation features of each type are much
sparse, increasing the difficulty of learning the effect of
triadic correlation features.

Convergence Analysis. We analyze the convergence prop-
erty of eTrust-s. The results in Figure 4(b) demonstrate
eTrust-s can converge quickly within 50 epochs on all the
four datasets. Particularly, it only takes less than 10 epochs
to converge on Epinions and Ciao.

5.3 Application
We apply the trust relationships inferred from Ali-large
by eTrust-s into two real products of Alibaba Group —
Taobao product search and Taobao product discovery. The
model eTrust takes more than several hours to perform
one iteration on such a big dataset and cannot finish in an
available time. The model eTrust-s only takes about 8 hours
for model learning and inference, which achieves more than
2000× speed up comparing with eTrust. Figure 5 presents
example results of Taobao product search and Taobao
product discovery with the products purchased by trusted
friends ranked higher. We conduct A/B Testing about two
weeks on two methods. One is CF, a collaborative filtering
method which is used to rank personalized products for
a user. The other is eTrust-s, which is used to rank ahead
the products purchased by the trusted neighbors inferred by
the proposed eTrust-s from Ali-large. Although we inferred
multi-typed trust relationships, we aggregate different trust
types together and do not distinguish them. We plan to
distinguish different trust types when conducting social
recommendation in the future.

We evaluate the search results by three metrics including
return rate which measures the proportion of returning
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Fig. 5. Applications of trust relationships in Taobao —
Alibaba E-Commerce platform.

behaviors after purchasing a product, poor rating rate
which measures the proportion of the purchase records
that receive poor ratings from users, and medium rating
rate. Specifically, we evaluate the metrics reduced by the
applied method upon the previous results before applying
the method. The three metrics are reduced by 36.78%,
54.55% and 57.38% respectively by eTrust-s, and the
results significantly outperform those of CF by 30.09%,
45.45% and 42.08% respectively. It indicates that when
ranking ahead the products of trusted neighbors, the search
results can help users accelerate their decision process,
and also improve users’ purchase experience. In another
application of Taobao product discovery, an addition met-
ric — gross merchandise volume is improved by 2.75%
when recommending the products purchased by the trusted
neighbors, which implies that users highly trust the recom-
mendations from their acquaintances.

6 CONCLUSION

This paper studies how to infer trust relationships to facil-
itate Alibaba’s E-Commerce business. We formalize trust
into four-typed acquaintances and conduct an analysis on all
kinds of type-based dyadic and triadic network corrections
among relationships. Then we propose a novel method
namely eTrust by incorporating the discovered correlation
patterns into a factor graph model. Experimental results
on four genres of real-world datasets show that the pro-
posed method significantly outperforms comparison meth-
ods. However, the limitation of the proposed eTrust method
is the potential inefficiency when dealing with large graphs.
An approximate model eTrust-s is proposed to address
the limitation, but may hurt the accuracy. In a number of
practical applications, as we tested, eTrust-s performs very
well, at least as well as eTrust. Our experimental results
show that when dealing with large networks, eTrust-s can
achieve > 2000× efficiency speedup, while guaranteeing
a comparable accuracy to eTrust. A/B testings on Taobao
product search/discovery further confirm the business value
of the study. But it also shows that the performance of
the proposed models is impacted when the network is too
sparse, as the major improvement is caused by the network

correlation features. We will further investigate how to
reduce the impact caused by sparsity. Besides, people may
trust others on electronics but not fashion [34], which is
also important on social recommendations. We will study
how to infer this multi-aspect trust in future works.
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[37] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
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