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Social influence occurs when one’s opinions, emotions, or behaviors are affected by others in a social network.
However, social influence takes many forms and its underlying mechanism is still unclear. For example, how
is one’s behavior influenced by a group of friends who know each other and by the friends from different ego
friend circles?

In this paper, we study the social influence problem in a large microblogging network. Particularly, we
consider users’ (re)tweet behaviors and focus on investigating how friends in one’s ego network influence
her retweet behaviors. We propose a novel notion of social influence locality and develop two instantiation
functions based on pairwise influence and structural diversity. The defined influence locality functions have
strong predictive power. Without any additional features, we can obtain a F1-score of 71.65% for predicting
users’ retweet behaviors by training a logistic regression classifier based on the defined influence locality
functions. We incorporate the social influence locality into a factor graph model, which can further leverage
the network-based correlation. Our experiments on the large microblogging network show that the model
significantly improves the precision of retweet prediction.

Our analysis also reveals several intriguing discoveries. For example, if you have six friends retweeting
a microblog, the average likelihood that you will also retweet it strongly depends on the structure among
the six friends: the likelihood will significantly drop (only 1

6
) when the six friends do not know each other

comparing with the case when the six friends know each other.
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1. INTRODUCTION
Social influence occurs when one’s behaviors (or opinions and emotions) are affected
by others in a social network. Understanding the mechanism of influence in a social
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network can help capture the complex patterns that govern the dynamics of the social
network [Tang et al. 2009].

At the high level, social influence has global patterns and local patterns. The former
means that one’s behavior is influenced by the global pattern in a social network. Ex-
amples of the global patterns include influence by a global culture [Robertson 1992]
and conform to the majority opinion in a community [Tang et al. 2013], and influence
from external network [Myers et al. 2012]. The latter, i.e., local patterns of social in-
fluence, means that one’s behavior is influence by friends in her ego-network (refer to
Section 2 for a formal definition). Examples of local patterns include pairwise influ-
ence [Goyal et al. 2010; Saito et al. 2008], indirect influence [Shuai et al. 2012], and
topic-level influence [Liu et al. 2012; Tang et al. 2009]. Social influence is a funda-
mental issue in social network analysis and it can benefit many real applications. For
example, based on the influence probability, Kempe et al. presented the notion of in-
fluence maximization [Kempe et al. 2003], an essential problem for viral marketing in
the social network. Baskshy et al. [Bakshy et al. 2012] conducted two very large field
experiments in Facebook and verified the strong effect of social influence on consumer
responses to ads. Leskovec et al. [Leskovec et al. 2006] leveraged social influence to
help improve the recommendation performance in the social network. Despise much
research has been conducted in this field, the underlying mechanism of social influ-
ence is still unclear. One important reason is that social influence takes many forms
and each form may be determined by different factors.

In this paper, we study the social influence problem in a large microblogging net-
work, Weibo.com1. Specifically, we consider users’ (re)tweet behaviors and focus on
investigating how friends in one’s ego network influence her retweet behaviors.

Illustrative example To clearly motivate this work, we first give a real example of
retweet influence derived from the microblogging network (Weibo). We consider how
a user’s retweet behavior is influenced by her friends. Figure 1(a)-1(c) shows three
similar cases when user v has six friends already retweeted a microblog (referred to as
active neighbors and denoted as red nodes). A white node indicates the corresponding
user (friend) does not retweet the microblog (referred to as inactive neighbor). The
difference of the three cases is that the inner structure of the six friends is different.
In Figure 1(a), the active neighbors A, C, and D are in one connected component, while
B, E, and F are in another connected component. Thus the six active neighbors form
two connected circles2. In Figure 1(b) and 1(c), the number of the connected circles
formed by the six active neighbors are respectively four and six. In the three cases, we
have totally collected 5,736,320 user samples in case1, 984,230 user samples in case2,
and 805,889 user samples in case3.

We then study how likely user v will also retweet the microblog in the three different
situations. We use a large microblogging network from Weibo to estimate the average
probability that user v retweets the microblog in the three cases. We found several in-
teresting patterns from the result as shown in Figure 1(d). The average likelihood that
user v retweets the microblog strongly depends on the inner structure among the six
friends: the probability that user v retweets the microblog in case 1 is three times (3×)
higher than that in case 3. We further expand the analyses to more cases by varying
the number of active neighbors and the number of formed connected circles. Figure 1(e)
shows the retweet probability by user v in various cases. It is very interesting that the
retweet probability of user v is clearly negatively correlated with the number of con-
nected circles formed by the active neighbors, no matter what kind of messages that

1The most popular Chinese microblogging service.
2The term circle comes from sociology to represent a group of socially interconnected people.
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(a) Case 1: #circles=2 (b) Case 2: #circles=4 (c) Case 3: #circles=6

(d) Retweet probability in case 1,2 and 3 (e) Retweet probability in various cases

Fig. 1. Illustration of social influence locality for user v in her ego network. In (a) - (c), the node in the
center of each network represents user v. Given a microblog m, red nodes represent “active” neighbors of
user v who have retweeted m, while the white nodes denote those neighbors in v’s ego network who did not
retweet. Those active neighbors construct (a) 2 circles (b) 4 circles (c) 6 circles. Figure (d) shows the retweet
probability of user v in the three cases. Figure (e) shows the retweet probability in more various cases.

have been retweeted by the neighbors. The retweet probabilities in this paper are all
per user and are calculated by (#retweet users satisfying given conditions) / (#users
satisfying given conditions). For example, to calculate the retweet probability in Fig-
ure 1(a), we first find all users with six followees who already retweeted one same
microblog and meanwhile the six followees form 2 circles. Then among all these users,
we denote the number of the users who also retweeted the same microblog as N+ and
the number of the users who did not retweet the microblog as N−. Finally, the retweet
probability is calculated as N+/(N++N−). The retweet probability is usally quite low
because N+ is often much smaller than N−.

From the above example, it seems that users’ retweet behaviors are strongly in-
fluenced by friends in her ego network. However, what are fundamental factors that
trigger the phenomenon and why? In this paper, we formalize the problem as social
influence locality and try to conduct a systematical investigation on the problem. The
challenges of the problem are as follows:

— First, a straightforward question is: is there really influence between users for the
retweet behavior? Figure 1 presents some intuitive explanation; however how to pro-
vide a theoretical proof.

— Second, how to formally define this type of influence using a principled function? It is
necessary to give a formal definition of the phenomenon and provide its instantiation.

— Third, How to design a predictive model so that we can leverage the influence to
predict users’ retweet behaviors?
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Results To address the above challenges, we first employ Weibo data as the basis
in our study and present a debias sampling method to prove the existence of social
influence for the retweet behaviors. We then propose a formal definition of social in-
fluence locality and develop two instantiation functions of social influence locality for
modeling the retweet behaviors. The defined influence locality function has a strong
predictive power. We employ it for modeling and predicting users’ retweet behaviors.
Predicting users’ retweet behaviors have many applications. For example, it can help
recommending important tweets to users. Since with the rapid increasing number of
tweets, information overload becomes a serious problem, which makes it urgent to rec-
ommend most interesting tweets to users [Chen et al. 2012a; Feng and Wang 2013].
In addition, understanding how retweeting works can provide insight into how infor-
mation spreads through large user communities [Petrovic et al. 2011] and also have
applications in marketing, such as influence maximization [Kempe et al. 2003].

With merely a few features based on the influence locality functions, we could learn a
simple classifier which results in good predictive performance, and is even better than
existing methods that employ various features by +0.6% in terms of F1-measure. We
further propose a factor graphic model for modeling and predicting users’ retweet be-
haviors. The model not only considers traditional features for modeling users’ retweet
behaviors, but also incorporates social influence locality and network-based correlation
into a probabilistic graphical model. Our experiments on the large microblogging net-
work show that the model significantly improves the precision of retweet prediction.
In addition, we also have several interesting findings:

— There is a strong evidence for the existence of social influence locality. The fraction
of active users (retweeted a microblog) with 2 active neighbors (followees who have
retweeted the same microblog) is about 2 times greater than the fraction of active
users with only one active neighbors (Cf. Figure 3).

— Though the probability of a user retweeting a microblog is positively correlated
with the number of active neighbors, it is negatively correlated with the number
of connected circles that are formed by those neighbors. When there are six active
neighbors, the likelihood will significantly drop (only 1

6 ) when the six friends do not
know each other comparing with case when the six friends know each other (Cf. Fig-
ure 1(e)).

— Pairwise influence differs from users. The retweet probability generally increases
about 10% per 0.05 increase of the average pairwise influence from the active neigh-
bors (Cf. Figure 5).

Compared with the previous conference version, the major improvements lie in that
we conduct deeper analysis about the parameter τ of ego network, the whole data
set distribution, the correlation feature and the basic features that influence the pre-
diction performance. In addition, we explicitly give problem definition and add more
concrete related work.

Organization. Section 2 formulates the problem of social influence locality. Section
3 describes the investigated data. Section 4 performs an investigation to test the ex-
istence of influence locality on retweet behaviors. Section 5 explains the instantiation
functions for influence locality. Section 6 proposes the methods of influence locality
based classification model to predict retweet behaviors. Section 7 presents experimen-
tal results of retweet behavior prediction. Finally, Section 8 reviews the related work
and Section 9 concludes.
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2. PROBLEM DEFINITION
In this section, we first give several necessary definitions and then present a formal
definition of the problem.

A social network can be represented as G = (V,E), where V is a set of |V | = N users,
E ⊆ V × V is a set of directed/undirected relationships between users, and eij ∈ E
represents a relationship between vi and vj . From the definition, we see that each user
has a set of neighbors in the network. To make it more general, we give the definition
of ego network.

Definition 2.1. τ -ego network For a user vi ∈ V , we useGτi ⊆ G to denote vi’s τ -ego
network, which means a subnetwork formed by vi’s τ -degree friends in the network G,
where τ ∈ N.

In the definition, τ is a tunable integer parameter to control the scale of the ego net-
work. If τ = 1, the τ -ego network is equal to the a subnetwork formed by user vi’s direct
neighbors. On the other hand, according to the theory of six-degree separation [Mil-
gram 1967], any two persons can be connected in a maximum of six steps. Therefore,
the value of τ should not be too large, otherwise, the τ -ego network Gτi will be equal to
the complete network G. In the definition, we can consider either bi-directional rela-
tionships or directional relationships. For example, for modeling the retweet behaviors
in microblogging networks, we consider directed relationships between users. In addi-
tion, we give the following definition of retweet action.

Definition 2.2. Retweet Action We use a triple (vi, t,m) to represent that user vi
retweets a microblog m at time t. For the microblog m, we denote all users’ retweet
actions as the action history Y = {vi, t,m}i,t. Further we denote yti,m as the action
status of user vi at time t for the given microblog m.

Without loss of generality, for the microblog m, we consider the binary action, i.e,
yti ∈ {0, 1}, where yti = 1 indicates that user vi performed a retweet action at time t,
and yti = 0 indicates that the user did not perform the retweet action. We call the user
who performed a retweet action as active user, otherwise inactive user. Such an action
log can be available in all the microblogging systems.

As one important goal of this work is to understand how users’ retweet behaviors
influence (or are influenced by) friends in their τ -ego network, we further define the
notion of social influence locality.

Definition 2.3. Social Influence Locality
Suppose at time t, for the microblog m, user vi has a set of active neighbors N t

i,m =

{vj |vj ∈ Gτi ∧ ytj,m = 1} in her ego network Gτi , social influence locality is defined as
a function to quantify the degree that user vi’s retweet action at time t′ (t′ > t) is
influenced by the active neighbors N t

i,m, i.e.,

Q(N t
i,m, G

τ
i ), with τ ∈ N+ (1)

Here we only give a general definition of social influence locality, which can be in-
stantiated in different ways. Finally, given all the above definitions, we can define the
problem we are going to address in this work.

Problem 1. Given a network G = (V,E) and users retweet action history Y =
{vi, t,m}i,t, for user vi ∈ V at time t, our goal is to infer 1) whether the active neigh-
bors of vi have a influence on vi’s retweet action? 2) how to quantify the influence (i.e.,
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how to instantiate the social influence locality Q(N t
i,m, G

τ
i )? 3) how to incorporate the

influence into a principled model for predicting user vi’s retweet behavior?

3. DATA DESCRIPTION
The microblogging network we used in this study was crawled from Sina Weibo.com,
which, similar to Twitter, allows users to follow each other. Particularly, when user A
follows B, B’s activities such as (tweet and retweet) will be visible to A. A can then
choose to retweet a microblog that was tweeted (or retweeted) by B. User A is also
called the follower of B and B is called the followee of A.

As of December 2013, the total number of Sina Weibo users is about 560 million,
a similar number to Twitter. This is obviously too large for a few tens of crawlers to
collect the entire user space within a short period of time. We had to choose a sam-
pling strategy. To begin with, 100 random users were selected as seed users, and then
their followees and followees’ followees were collected. In total 1,787,443 users were
included in the core network. The crawling of the followees can make the core network
more cohesive than crawling the followers, because many users are commonly followed
by massive users. Then we monitor the dynamic changes of the “following” relation-
ships for the 1,787,443 users from 8/28/2012 to 9/29/2012. Averagely there are 364,600
new “following” links and 267,515 “unfollow” links created per day. At the end of the
crawling, we produced in total 4 billion following relationships among them, with av-
erage 200 followees per user. Notice that part of the final crawled users being followed
may not be in the core network. Readers can refer to the Sina API of retrieving friend
list for details 3.

After crawling the network structure, for each one in the 1,787,443 core users, the
crawler collected her 1,000 most recent microblogs. The process resulted in 1 billion
microblogs in total. Each miscroblog can be either an original or a retweeted microblog
and contains id, original microblog id, user id, content, time and so on. Readers can
refer to the Sina API of retrieving user’s microblogs for details 4. We also crawled
all the users’ profiles, which include name, gender, verification status, #bi-followers,
#followers, #followees, creating time and so on. The specific format can refer to the
Sina API of retrieving user profile 5.

We conducted some high level analyses on the crawled data set. Figure 2 shows
several interesting statistics obtained from the data set. All the distributions are all
drawn in log-log scale. Figure 2(a) shows the follower distribution per user. We see
that a small portion of users has a huge number of followers. For example, 0.05%
users have more than 2 million followers. The phenomenon coincides with the discov-
eries that 0.05% of the user population attracts almost 50% of all attention within
Twitter [Wu et al. 2011] and 1% of the Twitter users control 25% of the information
diffusion in Twitter [Lou and Tang 2013]. Figure 2(b) shows the followee distribution
per user. It seems that the number of the followees is almost averagely distributed in
different ranges except the largest number of the followees (Sina weibo sets up a lim-
itation that each user can only follow at most 3000 followees). Figure 2(c) shows the
tweet distribution per user, i.e., the distribution of the number of microblogs posted by
each user. We see that the distribution satisfies the power law distribution followed by
an exponential tail, which is similar to the discoveries about human communications
found by Wu et al. [Wu et al. 2010]. Figure 2(d) shows the retweet distribution per
original microblog, which presents an explicit power law trend.

3http://open.weibo.com/wiki/2/friendships/friends
4http://open.weibo.com/wiki/2/statuses/user timeline
5http://open.weibo.com/wiki/2/users/show
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Table I. Data statistics.

Dataset #Users #Follow-
relationships

#Original-
microblogs #Retweets

Weibo 1,776,950 308,489,739 300,000 23,755,810

In this paper, we focus on studying the influence from the followees on one’s retweet
behavior in microblogging networks. For each investigated user sample, we need to
make the followees in her ego network and the action status of those followees com-
plete enough. Thus, we only consider the core network comprising of 1,787,443 users.
We also select 300,000 popular microblog diffusion episodes from the above crawled
data set. Each diffusion episode contains the original microblog and all its retweets.
On average each microblog has been retweeted 80 times. The total number of retweets
associated to the 300,000 diffuion episodes are 23,755,810. The sampled data set en-
sures that for each diffusion episode, the active (retweet) status of followees in one’s
τ -ego network is completed. In this way, we can better investigate the influence effect
from the active followees of one user. Table I lists statistics of the data set used in this
paper. All data set and codes used in this work are publicly available 6.

4. TEST FOR EXISTENCE OF INFLUENCE LOCALITY
We first engage into a sampling test to verify the existence of social influence local-
ity for the retweet behaviors. This problem can be connected to the causality inference
problem [Pearl 2009]. For this purpose, randomized experiment is the preferred golden
method. The basic idea is to partition users into two groups: treatment group VT and
control group VC . For users in the treatment group, we assign some treatment of in-
terest, and for users in the control group, we do not assign the treatment. In our test,
the treatment of interest is defined as the social influence one would receive in her ego
network. We associate a status for each user. If a user retweets a microblog posted by
her friend, we say her status becomes active, otherwise inactive. Finally, we compare
the activation statuses of all users between the two groups.

One problem in the sampling test is how to randomly assign users to the treatment
and the control groups. Straightforwardly, given a microblog, we could view users who
have followees already retweeted the microblog as users in the treatment group, and
assign users who do not have any followees retweeted the microblog to the control
group. However, in practice, it is highly infeasible. This is because, in the microblog-
ging network, if a user does not have any followees retweeted the microblog, she will
have no chance to see the microblog and thus will not be possible to retweet it. To ad-
dress this, we assign users who have only one followee retweeted the microblog to the
control group and users who have more than one followees retweeted the microblog
to the treatment group. In this sense, we try to evaluate the correlation between the
probability of a user performing the retweet behavior and her active neighbors. An-
other trouble we are facing is the selection bias, that is users who were treated would
have a higher activation probability than those who were not treated even though the
treated users were not treated. This problem was also reported in the study on the
influence of product adoption [Arala et al. 2009]. Another bias is the confounding bias,
e.g., popular microblogs make users more likely to retweet and be treated, and recently
posted microblogs seem to be more likely to be retweeted.

Methodologies To deal with the above problems, we use a matching-based sampling
method for testing the influence. The intuition behind this method is to first fix users
in the treatment group as those who have more than one followees retweeted a given

6http://arnetminer.org/Influencelocality
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(a) Follower distribution (b) Followee distribution

(c) Tweet distribution (d) Retweet distribution

Fig. 2. Data statistics

microblog, and then for each user in the treatment group, we try to find the most
matched user from the original control group, and finally construct a new control group
by all the matched users. Specifically, we use a logistic regression model to learn a
probabilistic classification model, and then apply the model to estimate the posterior
probability of each user belonging to the treatment group. Finally, for a particular
user u ∈ VT in the treatment group, we select user v ∈ VC who results in the minimal
difference of the posterior probability with user u as u’s matched user, i.e.,

v = arg min
v′∈VC

‖pu − pv′‖ (2)

To learn the logistic regression model, we aim to maximize the following likelihood
objective function:

O(α, β) =
∏
v∈VT

P (T = 1|Xv)
∏
v∈VC

P (T = 0|Xv),

P (T = 1|Xv) =
1

1 + e−(αXv+β)

(3)
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Fig. 3. The result of matching-based sampling test for influence locality. NT=1 is the average number of
active users in the treatment group, and NT=0 is the average number of active users in the control group.

where Xv is the feature vector describing attributes of user v; α are weights of the at-
tributes and β is a bias, both of which are learned by maximizing the objective function
O.

In learning the logistic regression model, for each microblog m, we consider various
time spans after it has been published, i.e., 0-1, 1-5 , 5-10, 10-24, 24-48, and 48-72
hours. For each user who has retweeted m, we view her as active at a specific time
span when she retweeted, and we also treat her as inactive instances at other time
spans before she really retweeted. For each follower of an active user, we treat her as
an inactive instance at every time span. Then we count the number of previous active
neighbors for each active and in-active instance. Finally, we can determine the in-
stances in the original treatment and control groups, and learn the logistic regression
model based on them.

Results The test results are shown in Figure 3. From the figure, we can see that for
all the time spans, the fraction of active users with 2 active neighbors is about 2 times
greater than the fraction of active users with only one active neighbor, i.e. NT=1

NT=0 ≈
2. Meanwhile, the fraction of active users in the treatment group increases with the
number of active neighbors. The test results show strong evidence for the existence of
the social influence locality on user’s retweet behaviors. However, we also observe that
after 48 hours when the original microblog has been published, the increasing rate
slows down with the number of active neighbors, which suggests that the influence
decays over time.

In the figure, NT=1 is the average number of active users in the treatment group,
and NT=0 is the average number of active users in the control group. We calculate the
ratio of the fractions for the two numbers and can conclude that the influence locality
exerts positive effect on users’ retweet behaviors if N

T=1

NT=0 > 1.

Discussion of τ In the above test and the following experiments in the paper, we set
the parameter τ as 1 and hence focus on the 1-ego network. We conduct some analysis
to verify the reason why we select τ as 1.

When τ = 1, the influence actually only comes from the direct connected neighbors.
When τ > 1, the influence from the indirect connected neighbors is also included.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January 2014.
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Fig. 4. The effect of influence locality (τ = 2) for users.

The larger value of τ is, the more indirect influence is considered within the influence
locality. The question is, whether the indirect influence is evident or not.

For different kinds of online social networks, the form of the relationships between
users is different, which may indicate different effect of influence. For example, the
relationships in Facebook are undirected friend relationships and the indirect friends
sometimes present evident influence, while the relationships in microblogging net-
works are directed “following” relationships and the influence from those indirect “fol-
lowing” relationships may be relatively weak. In this paper, we investigate whether
the indirect influence from 2-ego network in Weibo network is evident. Specifically, we
fix the number of active neighbors in one’s 1-ego network, and then analyze the effect
from active neighbors in 2-ego network. Here the neighbors are the users that a user
directly (τ = 1) or indirectly (τ > 1) follows. The results are shown in Figure 4. We
can see from the figure that the effect from the active neighbors in 2-ego network al-
most remains unchanged when fixing the number of active neighbors in 1-ego network
(i.e., from 1 to 5). We also find that the retweet probability increases with the number
of active neighbors in 1-ego network. The results indicate that the retweet behaviors
from the indirect followees in Weibo network exert little influence on users’ retweet be-
haviors. The phenomenon can be explained as that users can not be easily exposed by
the messages from their indirect followees, and thus the influence from those indirect
followees is trivial. According to the analyses , we set the parameter τ as 1 and hence
focus on the 1-ego network.

5. INSTANTIATION FOR INFLUENCE LOCALITY
We present the instantiation functions of influence locality for modeling retweet behav-
iors. In particular, we focus on studying the effects of pairwise influence and structure
influence.

Pairwise influence Most existing literatures on social influence focus on analyzing
influence between users, i.e., pairwise influence. The pairwise influence can be defined
based on social ties and interactions between users. To quantify this, we cast the prob-
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(a) Average pairwise influence (b) Sum pairwise influence

Fig. 5. The effect of random walk based pairwise influence (a) calculated by averaging the random walk
probabilities of active neighbors. (b) calculated by adding up the random walk probabilities of active neigh-
bors.

lem as measuring the relatedness between nodes in a graph and use the theory of
random walk with restart (RWR) [Lovasz 1993; Sun et al. 2005] to achieve it.

Specifically, we conduct RWR in user vi’s τ -ego network Gτi and calculate the random
walk probability pj for each active neighbor vj using Eq. 4.

~Pi = (1− c)A~Pi + c~Ii (4)

where ~Pi = (Pi(1), Pi(2), ..., Pi(|Gτi |)) is the steady state probability vector, with each
dimension Pi(j) denotes the steady state probability that our random walker will find
herself at node vj . |Gτi | is the size of the ego network of vi. ~Ii is a column vector with
all its elements zero, except for the entry that corresponds to node vi; set this entry to
1. We call ~Ii the “restart vector”. A is the adjacency matrix of the ego network. c is the
probability of returning to the node vi.

The random walk probability can be explained as how the influence of an active
neighbor can finally reach the given user vi via the network connection between them.
For an example, as shown in Figure 1(b), user B only has one path to reach v, while F
has a number of different paths to connect v through E and another two users. Figure 5
shows the probability that a user retweets a microblog conditioned on (a) the average
random walk probability and (b) the sum of the random walk probability of all active
neighbors in her ego network. From both figures, we can observe that the random walk
based pairwise influence score can be used as a good indicator of the retweet behavior.

Structure influence As observed in Figure 1(b), user v has six active neighbors,
A, B, C, D, E, and F , who form four connected circles. How is the influence locality
correlated with the inner structure of active neighbors? A more specific question is:
comparing with A and B who distribute into different circles, will the pair of users
C and D who reside in the same circle have the same influence effect on v’s retweet
behavior? Literature [Ugander et al. 2012] reports that structural diversity (captured
by the presence of multiple compnents of the local structure) can be used as a positive
predictor of user engagement. They simply consider the number of connected compo-
nents (circles) as the indicator to analyze its correlation with the probability of user
engagement to some activity, and find significantly positive correlation there. Will the
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structural diversity has the same effect on the retweet behavior? How to define an
utility function to capture this effect?

Figure 1(e) plots the curves of retweet probability versus the number of connected
circles formed by the active neighbors. Specifically, we analyze the results by varying
the number of active neighbors by 2,3,4,5,6-10, 11-20, and 21-30 respectively. We see
that, surprisingly, the retweet probability is negatively correlated with the number of
circles, which is opposite to the discovery in [Ugander et al. 2012]. This phenomenon
might be explained from the purpose of retweet. Boyd et al. [Boyd et al. 2010] found
that one important purpose for people to retweet is to influence others. According to
this, people may quickly lose interests to retweet when they find that many of their
social circles are already aware of the message. We may also explain it by using the
theory of peer pressure [Durkin 1996]. Peer pressure is the influence that a peer group,
observers or individual exerts that encourages others to change their attitudes, values,
or behaviors to conform the group norms. If one user observes a microblog having been
retweeted by many friends from one same group, she will be very likely to also retweet
it under the peer pressure.

Note that when calculating the number of circles, we only consider reciprocal (bi-
directional) “following” relationships between users in one’s ego network. This is be-
cause, we find that directional relationships are meaningless from an interaction point
of view. Huberman et al. also empirically prove that a sparser and simpler network of
actual friends is a more influential network in driving the microblogging usage [Hu-
berman et al. 2009]. Furthermore, we also limit circles in k-brace (k is set as 2) as
proposed by Ugander et al. [Ugander et al. 2012], since two actual circles may be eas-
ily connected by an arbitrary local bridge, which however, should not be treated as
in the same circle. k-brace circle is defined as the circle with all the edges of embed-
dedness less than k being removed, where embeddedness of an edge is the number of
common neighbors shared by the two endpoints.

We can use the same matched sampling method introduced in section 4 to test the
structure influence from ego network. Specifically, we assign the users with only one
connected component formed by the active neighbors to the control group, and the
users with more than one connected component formed by the active neighbors to the
treatment group. To reduce the selection bias caused by the assigning process, we find
the most matched users from the original control group to each user in the treatment
group to construct a new control group. We train a logistic regression model P (Y |X) to
match users, where Y is the posterior probability of a user belonging to the treatment
group (i.e., having more than one, e.g., five, active connected component), and X are
all observed features except the number of the connected components. However, the
matched sampling method is time consuming. It takes about more than seven days to
get all the test results shown in Figure 3 with the scale of 1 million users. Actually,
we tried the matched sampling method to test the structure influence on one setting,
where users with 1 connected component formed by 5 active neighbors were assigned
to the control group and users with 5 connected components formed by 5 active neigh-
bors were assigned to the treatment group. We found from the test result that the ratio
of the active users between the two groups was less than 1, which indicated that the
users with less connected components formed by active neighbors are more likely to
retweet. The result is actually consistent with the empirical analysis shown in Figure
1(e). Considering the time efficiency, we empirically analyze the retweet probability
under different number of circles formed by active neighbors.

Instantiation functions Based on the above observations, we give a definition of the
influence locality function. More precisely, we define it as,
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Q(N t
i,m, G

τ
i ) = w × g(N t

i,m, G
τ
i ) + (1− w)× f(N t

i,m, G
τ
i ) (5)

where g(N t
i,m, G

τ
i ) denotes the pairwise influence and f(N t

i,m, G
τ
i ) denotes the structure

influence. Briefly, we abbreviate them as Q, g, and f , respectively. Notation w denotes
a tunable parameter to balance the two terms.

For the pairwise influence, we have tried different definitions, for example, the sum
of the random walk probabilities of all active neighbors, i.e.,

g(N t
i,m, G

τ
i ) =

∑
vj∈Nt

i,m

pj (6)

where pj is the random walk probability from the active user vj to the given user vi. We
also tried other definitions by replacing the sum with the average functions (arithmetic
mean and geometric mean).

In addition, in the definition, we should consider the temporal information (the time
that a user retweets a microblog). By adding the time into the above equation, we
obtain,

g(N t
i,m, G

τ
i ) =

∑
vj∈Nt

i,m

hjpj (7)

where hj is the difference between the time when vj retweeted the microblog and the
time when we try to predict vi’s retweet behavior. The function sum can be also re-
placed by other functions such as arithmetic mean, geometric mean, and max.

For the structure influence, we can simply use a linear combination of the num-
ber of connected circles to quantify the influence function. However, as we see from
Figure 1(e), the influence does not linearly decrease. Thus we uses the exponential
function to describe the effect of the structure influence:

f(N t
i,m, G

τ
i ) = e−µ|C(Nt

i,m)| (8)

where C(N t
i,m) is the collection of circles formed by the active neighbors and µ is a

decay factor.

6. RETWEET BEHAVIOR PREDICTION
The defined influence locality function has a strong predictive power and can be used
for many applications such as retweet behavior prediction and social recommendation.
In this section, we first introduce the defined features, and then describe two methods
that will be used to predict the retweet behaviors.

6.1. Feature definition
To predict retweet behaviors, in addition to the influence locality based features, we
also investigate several other basic features that may affect the retweet probability.
We define three kinds of basic features, including personal attributes, topic propensity
and instantaneity. Specifically, we try six personal attributes, including the number
of followees, the number of followers, the number of bi-followers (i.e., the reciprocal
“following” relationships), the longevity (age of the account), gender (0 indicates male
and 1 indicates female) and verification status (0 indicates being verified as a celebrity
and 1 indicates not being verified).
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Table II. Personal attributes for retweet behavior prediction.

Basic Feature Value Range Ave Median
#Followers 0-54,164,442 9,849 493
#Followees 0-3,000 467 280

#Bi-followers 0-2,983 210 114
Longevity 49-1,234 472 760

Gender 0,1 - -
Verification status 0,1 - -

We summarize the statistics for the six personal attributes in Table II. In order
to investigate the correlation between the retweet probability and the influence from
the active neighbors for users with different values of personal attributes, we divide
each personal attribute into different ranges. For example, for the number of followees,
we count the number of users with different number of followees and find the ten
fractile respectively, and then for each ten fractile point, we investigate the retweet
probabilities under the influence from 1 to 5 active neighbors. We analyze the retweet
probabilities for users with different values of followers, bi-followers and longevity in
the same way as followees. For gender and verification status, the values are naturally
classified into 0 and 1.

Personal attributes In Figure 6(a), we find that when the number of followees is
too few (0-50), the whole retweet probability (the retweet probabilities under different
number of active neighbors) is very low and the influence from active neighbors (the
increase rate of the retweet probabilities from 1 to 5 active neighbors) almost exerts no
effect. When the number of followees increases to 100-150, the whole retweet probabil-
ity increases and the influence from active neighbors becomes evident. However, when
the number of followees continues to increase, the whole retweet probability and the
influence begin to decrease. The phenomenon may be explained as that when people
follow a lot of users, the information source becomes overloaded, that makes people
difficult to find valuable information to retweet. For the follower attribute in Figure
6(b) and bi-follower attribute in Figure 7(a), the patterns are similar to the followee
attribute that the whole retweet probability and influence first rise then fall. The peak
point for follower attribute is 700-1000 followers and for bi-follower, the peak point is
100-160. The phenomenon may be explained that when the social relationships grow
up to a moderate status, the users are most active in retweeting and are also most
easily influenced by the active neighbors in order to develop their social circle.

We also investigate the correlation between the retweet probability and longevity
(age of an account). The results presented in figure 7(b) show that users with longer
longevity are more inclined to retweet and easily influenced by their active neighbors.
In Figure 8(a) and Figure 8(b), the results show that female and verified users are more
likely to retweet and be influenced by their neighbors than the male and unverified
users.

Instantaneity Instantaneity is defined as the elapsed time from when the original
microblog m was published. We find from Figure 3 that users are mostly influenced by
their active neighbors 5 to 10 hours after the original microblog being published. After
that, the retweet propensity presents decreasing trend over time. Especially after 48
hours, the influence increases very slowly.

Topic propensity Topic propensity is defined as the Jensen-Shannon diver-
gence [Heinrich 2004] between the topic distribution of the user v and the topic distri-
bution of the microblog m.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January 2014.



Who Influenced You? Predicting Retweet via Social Influence Locality A:15

(a) Followees (b) Followers

Fig. 6. The effect of influence locality for users with different number of (a) followees. (b) followers.

(a) Bi-followers (b) Longevity

Fig. 7. The effect of influence locality for users (a) with different number of bi-followers and (b) with differ-
ent longevity in weibo.

JSD(Pv ‖ Pm) =
1

2
DKL(Pv ‖ Pa) +

1

2
DKL(Pm ‖ Pa) (9)

where Pv is the topic distribution of user v, Pm is the topic distribution of microblog m,
and Pa is the average result of Pv and Pm. DKL is the KL divergence and is calculated
by DKL(Pv ‖ Pa) =

∑K
k=1 ln

Pv(k)
Pa(k)

Pv(k). To obtain the topic distributions for all the
microblogs and users, we first treat each historical microblog as a document and utilize
Latent Dirichlet Allocation [Heinrich 2004] to estimate the probability of generating
a microblog m from each topic k, which is denoted as P (m|k). Then we estimate the
probability of generating a user v from each topic k by averaging the probabilities of
all her historical microblogs associated to topic k.

P (v|k) =
∑
m∈Mv

P (m|k)
|Mv|

(10)
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(a) Gender (b) Verification Status

Fig. 8. The effect of influence locality for (a) male and female users and (b) verified or unverified users.

Fig. 9. The effect of influence locality for users with different topic propensity.

where Mv is the historical microblog collection of user v. Finally the topic distribution
for one user is denoted as Pv = {P (v|k)}Kk=1.

We show the correlation between retweet probability and topic propensity in Figure
9. From the result we can see that basically, when the calculated JSD is smaller, i.e.,
the topic propensity of a user to a microblog is greater, the user will be more likely to
retweet the microblog, and will be more likely to be influenced by the active neighbors
to retweet the microblog.

6.2. Logistic Regression Model
The retweet behavior prediction can be considered as a classification problem: given
one microblog m, a user vi and a timestamp t, the goal is to categorize user vi’s status
at t. We denote the classification outcome as yti,m. yti,m = 1 indicates that vi will retweet
m before t, and yti,m = 0 otherwise. We use the influence locality function Q(N t

i,m, G
τ
i )
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and the above defined features as evidence to predict yti,m. The advantage of the classi-
fication model is that we can integrate different combinations of the functions into the
model conveniently.

To solve the classification problem, many machine learning models can be used, such
as SVM and logistic regression classifier. In this paper, we use a logistic regression
classifier to predict the value of yti,m for each given (vi, t,m):

P (yti,m = 1|xti,m) =
1

1 + e−(αx
t
i,m+β)

(11)

where xti,m is the feature vector of user vi associated with microblog m at timestamp
t, and α are weights of the features and β is a bias, both of which are learned by
maximizing an objective function similar as Eq. 3.

6.3. Factor Graphic Model
In the above setting of the logistic regression model, each user to be predicted are
independent with each other. For predicting the behavior of user vi, the behaviors of vi’s
neighbors before time t are viewed as the observable information and can be leveraged
to predict the behavior of vi. However, when we change the setting as after δ time
interval when a microblog m was published, predicting the retweet behaviors of all the
users who have seen the microblog m, the behaviors of all the users to be predicted
are actually dependent. For example, when two friends vi and vj are both the users
to be predicted, one’s behavior can not be viewed as the observable information and
used as features to predict the behavior of another user. However, vi’s action status
will be very likely to influence the action status of vj . In summary, the action status
of one user not only depends on the predefined attributes associated to the user, but
also may be influenced by the action statuses of the neighbors to be predicted. The
logistic regression model views each instance as independent and cannot leverage the
correlation between instances. Thus, we propose to use a factor graphic model to model
the correlation between instances.

We construct a factor graph for each microblog m. We map each instance vi related
to m as a node in the factor graph and assign a label yi for each node. yi = 1 means
vi retweeted m and yi = 0 means vi did not retweet m. Each node is associated with
a vector of attributes ~xi, of which each dimension comes from the influence locality
features defined in Section 5 and the basic features defined in Section 6. For the influ-
ence locality features, we only consider the active neighbors in the training data. We
define two kinds of factors. The first kind is the attribute factor which represents the
posterior probability of the label yi given the attribute vector ~xi. The second factor is
the correlation factor which denotes the correlation between the labels of neighboring
nodes. We only construct the correlation factors between two nodes with the reciprocal
“following” relationships because the factor graphic model is an undirected probabilis-
tic model.

To instantiate the factor graphic model, we still need to give the formal defini-
tion of the objective function and instantiate the feature definitions. Given a net-
work G = (V,E), the action history Y = {yti,m} and the corresponding feature vector
X = {xti,m}, with some known variable yi = 1 or 0 and some unknown variables yi =?,
our goal is to infer values of those unknown variables. For simplicity, we remove the
superscript t and subscript m for all variables if there is no ambiguity. We begin with
the posterior probability of P (Y |X,G). Directly solving the posterior probability is ob-
viously intractable. Here, we instantiate the probabilities P (Y |G) and P (xi|yi) within
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Markov random field and Hammersley-Clifford theorem [Hammersley and Clifford
1971]:

P (Y |X,G) =
1

Z
exp{

V∑
i=1

D∑
d=1

αd × hd(xid, yi) +
∑

eij∈E

β × r(yi, yj)} (12)

where D is the number of attribute features, xid is the dth feature value of the ith

node; eij is a reciprocal relationship in the network G. h(·) represents the correlation
between user vi’s action status and her own features. r(·) corresponds to the correlation
between user vi’s action and her friend vj ’s action. Finally Z is a normalization factor
to guarantee that the resultant is a valid probability.

The objective function is defined as Oα,β = logPα,β(Y |X,G). Learning the factor
graphic model is to estimate a parameter configuration θ = ({αd}, β) from a given
historical data, which is to maximize the log-likelihood objective function, i.e., θ =
argmaxO(θ).

Model learning We employ a gradient descent method (or a Newton-Raphson
method) for model learning. Here we use αd as the example to explain how we learn
the parameters. Specifically, we first write the gradient of each αd with regard to the
objective function:

O(θ)
αd

= E[f(yi, xid)]− EP (yi|X,G)[f(yi, xid)] (13)

where E[f(yi, xid)] is the expectation of the local factor function f(yi, xid) given the data
distribution in the input network and EP (yi|X,G)[f(yi, xid)] represents the expectation
of f(yi, xid) under the distribution P (yi|X,G) learned by the model. Similar gradients
can be derived for parameter β.

The graphical structure in the factor graphic model can be arbitrary and may con-
tain cycles, which makes it intractable to directly calculate the marginal distribution
P (yi|X,G). We choose Loopy Belief Propagation due to its ease of implementation and
effectiveness. Specifically, we approximate the marginal distribution P (yi|X,G) using
LBP. With the marginal probabilities, the gradient can be obtained by summing over
all instances. It is worth noting that we need to perform the LBP process twice in each
iteration, one time for estimating the marginal distribution of unknown variables, i.e.,
yi =?, and another time for estimating the marginal distribution over all instances.
In this way, the algorithm essentially performs a semi-supervised learning over the
complete network. This idea was first proposed in [Tang et al. 2011] for learning to
categorize social relationships. Finally with the obtained gradient, we update each pa-
rameter with a learning rate η.

Prediction With the estimated parameters θ, we can predict the label of unknown
variables yi =? by finding a label configuration which maximizes the objective function,
that is, Y ? = argmaxO(Y |X,G, θ). To do this, again, we utilize the loopy belief prop-
agation to approximate the solution, that is, to calculate the marginal distribution of
each node with unknown variable, i.e.,P (yi|xi, G), and assign each node the label with
the maximal marginal probability.

Note that Logistic regression and factor graphic model are widely used in social
prediction. For example, Yang et al. [Yang et al. 2011] tried different loss functions
such as huber loss, lazy loss and logistic regression, and showed that the three loss
functions perform the same on the task of social prediction. Leskovec et al. [Leskovec
et al. 2010] leveraged logistic regression to verify the effects of the discovered positive
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and negative patterns on the task of link prediction. Tang et al. [Wu et al. 2013] utilized
factor graphic model to recommend partners in patent collaboration. Although we can
use other prediction algorithms such as matrix factorization to verify the effects of
the discovered influence patterns, logistic regression provides a coefficient for each
feature, which suggests how the feature is used by the model to provide weight for
or against a retweet behavior and provides proposals for how subset of these features
offers evidence for retweet behaviors. We also consider factor graphic model, because
it can explicitly model the correlation between the retweet behaviors of two users to be
predicted.

7. EXPERIMENTAL RESULTS
In this section, we validate the effectiveness of using influence locality functions for
predicting retweet behaviors.

7.1. Experimental Setup

Data preparation We use the data set described in Section 3 for retweet prediction.
Basically, for each user who retweeted a microblog in the collected data set, we treat
her as a positive instance, the goal is to predict whether she will retweet before her real
retweet time. For each follower of a positive instance, if the follower is never observed
to retweet the microblog exposed by her followee, we treat her as a negative instance.
The goal for each negative instance is to predict whether she will retweet before a
randomly selected timestamp. We select from 6 timestamps including 0-1, 1-5, 5-10,
10-24, 24-48, and 48-72 hours after the original microblog being published.

We observe that the positive and negative instances are much unbalanced (about
1:300) in the constructed dataset. Thus we sample a balanced data set with equal
number of positive and negative instances. Specifically, we sample a random negative
instance for each positive instance to ensure the equal number in the dataset. Learning
effective models from unbalanced data is an open problem in machine learning field.
The balanced method is aimed to alleviate this problem. We use a similar balanced
method as that in [Guha et al. 2004] in this work. This balance sampling method will
not influence the comparison between different approaches.

Comparison methods We compare our model with several methods.
LRC-Q: it uses the logistic regression model and only uses the influence locality

function Q(N t
i,m, G

τ
i ) defined in Section 5 as a feature to train the logistic regression

classifier.
LRC-B: it uses the logistic regression model and only uses the basic features defined

in Section 6 to train the logistic regression classifier.
LRC-BQ: it uses the logistic regression model and uses both the influence locality

function Q(N t
i,m, G

τ
i ) and the basic features to train the logistic regression classifier.

FGM-BQ: it uses the factor graphic model and uses both the influence locality func-
tion Q(N t

i,m, G
τ
i ) and the basic features as the attribute features, and also considers

the correlation feature between the labels of neighboring nodes to train the classifier.
For LRC-Q, LRC-BQ and FGM-BQ, we empirically set w = 0.5 in Q function and

µ = 1 in the structure influence function f .

Evaluation metrics We divide the constructed data set into training and test data,
and perform 5-fold cross validation. We evaluate the performance of retweet behavior
prediction in terms of Precision, Recall, F1-measure, and Accuracy.
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Table III. Performance of retweet behavior predic-
tion. (%)

Model Prec. Rec. F1 Acc.
LRC-B 68.11 74.26 71.05 69.74
LRC-Q 66.82 77.22 71.65 69.44

LRC-BQ 69.89 77.06 73.30 71.93

Table IV. Performance of LRC-Q (w = 1) by using different g func-
tions. (%)

Model Prec. Rec. F1 Acc.
g1 =

∑
pvi 57.42 77.13 65.83 59.96

g2 =
∑

pvi
|Sv|

60.21 75.03 66.81 62.72

g3 = |Sv|
√∏

pvi 60.28 75.31 66.96 62.84
g4 =

∑
hvipvi 58.85 92.68 71.99 63.94

g5 =
∑

hvi
pvi

|Sv|
61.57 91.72 73.68 67.24

g6 = |Sv|
√∏

hvipvi 61.85 92.67 74.19 67.76
g7 = maxhvipvi 61.15 91.13 73.19 66.61

7.2. Performance
Table III shows the performance of the comparison methods. The results show that
using only the influence locality function to predict retweet behaviors (LRC-Q) can
obtain a comparable performance with (even better than) the method using all the ad-
ditional features (LRC-B) (+0.6% in terms of F1-measure, -0.3% in terms of accuracy).
By combining the influence locality function and the additional features together, we
can obtain a bit improvement on performance (+1.65% in terms of F1-measure, +2.49%
in terms of accuracy).

Pairwise influence functions According to the various definitions of the pairwise
influence functions in Section 5, we further try different g functions for predicting
retweet behaviors. Specifically, we set w = 1 and try seven g functions for pairwise
influence defined in Section 5. The evaluation results are shown in Table IV. We can
see that, g6, which averages the time weighted pairwise influence by using geometric
mean, performs the best. The result suggests that the neighbors with different retweet
time exert different influence. Besides, we also find that arithmetic mean performs
poorer than geometric mean for both the time weighted pairwise influence (g5 under-
performs g6) and the pairwise influence without time weighting (g2 under-performs g3).
This is due to the reason that the pairwise influences from the active neighbors are not
normally distributed but right-skewed, i.e., the majority of pairwise influences are low
and a minority of pairwise influences are scattered in a fat right tail.

Parameter w There is one parameter w used in the Q = w× g + (1−w)× f function.
We study how the parameter w affects the performance of retweet prediction. Figure
10 plots the accuracy of LRC-Q with various values of w, where g is set as g6 according
to the best performance presented in Table IV. We see that the highest accuracy is
obtained when w is 0.5.

7.3. Analysis and Discussions

Feature contribution analysis We analyze the contribution of different features on
retweet behavior prediction. Specifically, we respectively add the basic features and
influence locality features into LRC-BQ one by one and evaluate the increase of the
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Fig. 10. Performance of LRC-Q under different values of w.

Fig. 11. Performance of different features.

predictive performance. A larger increase means a higher predictive power. We train
and evaluate the predictive performance of the logistic regression model with different
set of features. Figure 11 shows the accuracy of different versions of logistic regression
models. We can observe clear increase on the performance when adding the basic fea-
tures of bi-followers, followees and instantaneity, which indicates that the three kinds
of basic features can contribute a lot on predicting retweet behavior. Other basic fea-
tures do not present evident contributions, which indicates that their effects are coun-
teracted by other features. We also observe a clear increase on the performance when
adding the pairwise influence feature, which indicates that the aggregated pairwise
influence locality from the 1-ego network indeed exerts significant effect on retweet
behaviors. However, the structure influence presents insignificant effect.

How structure influence help? Through the analyses in Section 5, we find that the
probability of a user retweeting a microblog is negatively correlated with the number of
connected circles that are formed by the active neighbors. However, the negative effect
is evident only when the number of active neighbors is relatively large, i.e., larger than
5 active neighbors as shown in Figure 1(e). The negative influence is insignificant when
there are only a few active neighbors, i.e., less than 5 as shown in Figure 1(e). However,
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Table V. The proportion of instances with different number of active neighbors. (%)

#Active neighbors 1 2 3 4 5 >5
Proportion of instances 79.47 11.96 3.82 1.69 0.89 2.17

Table VI. Performance of retweet behavior prediction
with structure influence and without structure influence.
(%)

Model Prec. Rec. F1 Acc.
LRC-Q(w=1) 49.51 51.53 50.50 49.49

LRC-Q(w=0.5) 51.86 67.70 58.73 52.43

through analyzing the instances in our dataset for prediction, we find that almost 80%
instances only have one active neighbors, and the instances with the number of active
neighbors larger than 5 only occupies 2.17% (shown in Table V). Therefore, when we
use those instances for training and test, the predictive performance is dominated by
the instances with a few number of active neighbors and the effect of the number of
circles can not be presented. To prove the effect of the structure influence, we sample
the instances with the number of active neighbors larger than 5, and then use the
sampled instances to conduct the training and test. We compare the performance of the
logistic regression model with only the pairwise influence function g (LRC-Q(w = 1))
and the logistic regression model with both the pairwise influence function g and the
structure influence function f (LRC-Q(w = 0.5)). The results presented in Table VI
show that when adding the feature of structure influence, F1-measure is improved by
about 8% and the accuracy is improved by about 3%. This indicates that structure
influence can indeed improve the performance of retweet prediction when the number
of active neighbors is large enough. We also notice that the whole performance in Table
VI is lower than that in Table III. It may due to the reason that users with large
number of active neighbors are very likely to have similar personal attributes and
propensity to retweet a microblog, and thus the behaviors of those users are more
difficult to predict.

In fact, in the current Sina Weibo system, when a user reads a microblog, the other
neighbors who have already retweeted the microblog are also exposed to the user. This
information is very useful to help the user determine whether the microblog is valuable
or not. According to our experiments, if the system can cluster the active neighbors
in different ego circles and tell the user in which circles the microblog has already
been diffused, it will further benefit the user to identify valuable information, and
meanwhile, the system can recommend the microblogs to the users according to the
features more accurately.

How correlation affects the predcitive performance? For evaluating the perfor-
mance of factor graphic model, we construct data set in different ways. Specifically, for
each microblog m, the positive instances, i.e., the users who retweeted a microblog m,
are divided into training data and test set. The training data are those who retweeted
m within 10 hours after m being published. Test set are those who retweeted m 10
hours after m being published. The negative instances, i.e., the followers of positive in-
stances that were never observed to retweet m, are also divided into training data and
test set in the same way, where the timestamps of the negative instances are randomly
generated.

Table VII shows the performance of LRC-BQ and FGM-BQ in the above experimen-
tal setting. The two methods both consider all the basic and influence locality features,
while FGM-BQ also considers the correlations between instances additionally. We can
see from the results that FGM-BQ outperforms LRC-BQ in terms of Precision but
under-performs it in terms of Recall. This is because FGM-BQ uses additional features
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Table VII. Performance of retweet behavior predic-
tion with correlation feature and without correlation
feature. (%)

Model Prec. Rec. F1 Acc.
LRC-BQ 66.78 52.28 58.65 70.76
FGM-BQ 70.75 48.02 57.20 71.25

and the prediction conditions are more strict. In order to distinguish their difference,
we perform sign test on their prediction results. The p-value of sign test is less than
0.001, which confirms that the factor graphic model considering the correlation feature
significantly performs better than the logistic regression model without the correlation
feature. We also find that the whole performance of this setting is lower than that in
Table III. This is because we only use the active users within 10 hours after a microblog
m being published to construct influence locality features. Thus the information can
be leveraged is less, which makes the prediction under this setting more difficult.

8. RELATED WORK

Social influence analysis We investigate the related work from two aspects, social
influence analysis and retweet behavior prediction.

Considerable work has been conduced for studying the effects of social influence.
These studies can be roughly classified into three categories: influence testing [Anag-
nostopoulos et al. 2008; Arala et al. 2009; Bakshy et al. 2012; Bond et al. 2012; La Fond
and Neville 2010], influence quantification [Barbieri et al. 2012; Belak et al. 2012; Di-
etz et al. 2007; Goyal et al. 2010; Gruhl et al. 2004; Kempe et al. 2003; Kimura et al.
2011; Saito et al. 2008; Tang et al. 2009; Tang et al. 2013; Tan et al. 2011; Liu et al.
2012; Myers et al. 2012; Weng et al. 2010; Shuai et al. 2012], and influence models and
maximization methods [Barbieri et al. 2012; Chen et al. 2010; Chen et al. 2011; Chen
et al. 2012c; Goyal et al. 2011; Kimura et al. 2011; Leskovec et al. 2007; Li et al. 2013].

Influence testing is to verify whether the influence indeed exists or not on certain
behaviors. One kind of work focuses on statistical causal inference based on the ob-
served data. For example, Arala et al. [Arala et al. 2009] distinguished the effect of
influence from homophily based on a statistical propensity score matching method.
Fond et al. [La Fond and Neville 2010] measured the gain in correlation and used a
randomization technique to assess whether a significant portion of this gain is due to
influence and/or homophily. Anagnostopoulos et al. [Anagnostopoulos et al. 2008] pro-
posed a shuffle test to examine the existence of social influence. Another kind of work
leverages the online social networks to conduct real controlled trials. For examples,
Bakshy et al. [Bakshy et al. 2012] conducted randomized controlled trials to identify
the effect of social influence on consumer responses to advertising, and Bond et al.
[Bond et al. 2012] used a randomized controlled trial to verify the social influence on
political voting behaviors.

Influence learning is to quantify influence. From the perspective of measured ob-
jects, we classify the studies into: quantifying influence from topic level [Barbieri et al.
2012; Tang et al. 2009; Liu et al. 2012; Weng et al. 2010], sentiment level [Tan et al.
2011], and so on. For example, Tang et al. [Tang et al. 2009] proposed a Topical Affinity
Propagation (TAP) approach to model the topic-level social influence in large networks.
Liu et al. [Liu et al. 2012] proposed a generative topic model to mine topic influence
between users in heterogeneous networks. Goyal et al. [Goyal et al. 2010] and Saito et
al. [Saito et al. 2008] measured the pairwise influence between two individuals based
on the idea of independent cascade model [Kempe et al. 2003]. Xin et al. [Shuai et al.
2012] studied the indirect influence using the theory of quantum cognition. Myers et
al. [Myers et al. 2012] and Lin et al. [Lin et al. 2013] proposed probabilistic mod-
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els to quantify the external influence out-of-network sources. Tang et al. [Tang et al.
2013] proposed a probabilistic factor graphic model to quantify the individual, peer
and group influence in a social network. Zhang et al. [Zhang et al. 2014] formalized
conformity influence and measured conformity of different roles. Belak et al. [Belak
et al. 2012] investigated and measured the influence between two communities. From
the perspective of the measuring methods, Dietz et al. [Dietz et al. 2007], Liu et al. [Liu
et al. 2012] and Zhang et al. [Zhang et al. 2014] used probabilistic topic models to learn
the influential strength between papers or users. Tang et al. [Tang et al. 2009], Tan
et al. [Tan et al. 2011] and Tang et al. [Tang et al. 2013] used probabilistic discrim-
inative models to learn the weights of different influence factors. Some other work
learns the influence based on the state-of-art influence models. For example, Gruhl
et al. [Gruhl et al. 2004] proposed a time-decayed diffusion model for blogging writ-
ing, and used an EM-like algorithm to estimate the influence probabilities. Saito et
al. [Kimura et al. 2011] learned influence by solving a likelihood function based on
time-decayed IC model. Some heuristic methods have also been proposed to quantify
the influence. For example, Goyal et al. [Goyal et al. 2010] effectively calculated the
influence probabilities by directly counting the number of actions in the collected data
set.

Influence models describe the process of how users influence each other. The state-of-
art influence models include two fundamental diffusion models, Linear Threshold (LT)
Model and Independent Cascade (IC) Model [Kempe et al. 2003]. Recent years, several
new influence models considering different factors have been proposed, such as time-
decayed Independent Cascade Model [Chen et al. 2012c; Kimura et al. 2011], topic
sensitive Independent Cascade Model and Linear Threshold Model [Barbieri et al.
2012], influence models considering positive and negative opinions together [Chen
et al. 2011], influence model considering friend and foe relationships together [Li et al.
2013], and the diffusion model distinguishing user roles [Yang et al. 2015]. Influence
maximization is one of the most important applications of influence. The objective is
to find K seeds in a network that can exert maximal influence. One kind of work is
to propose more efficient maximization methods [Chen et al. 2010; Goyal et al. 2011;
Leskovec et al. 2007]. Another kind of work is to propose the corresponding approxi-
mate solutions for variant influence models [Barbieri et al. 2012; Chen et al. 2011; Li
et al. 2013]

In this work, we mainly study the problem of influence testing and influence learn-
ing. The kind of influence we study is the aggregated influence from a user’s ego net-
work. The testing method is the statistical causal inference based on the observed
data and the learning method is a heuristic method to quantify the influence from the
pairwise and the structural angle.

Retweet behavior study A bulk of studies try to understand why and how people
retweet. Boyd et al. [Boyd et al. 2010] gave an interesting investigation on the rea-
sons why they retweet. The study was mainly based on human interviews and the
results are lack of verification on real large data. Some other studies try to explain
the retweet behaviors from different perspectives, for example, some researches focus
on analyzing the effect of the content of the tweets on retweet probability. Naveed
et al. [Naveed et al. 2011] used a machine learning approach to learn the weights
for different features extracted from the tweet content. They found that the tweets
containing hashtags, URLs or usernames are more likely to be retweeted [Naveed
et al. 2011]. Macskassy et al. [Macskassy and Michelson 2011] tagged the tweets with
Wikipedia categories and aggregated these tags for a particular user to generate a
topics-of-interest profile for that user. They came up with four models and found the
profile model (one would be more likely to retweet another user if they share similar
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profiles) was the most likely model. Some other perspectives such as the popularity of
the topics, strength of the social ties, and the status of the publisher are also investi-
gated by different researchers [Chen et al. 2012b; Duan et al. 2010; Suh et al. 2010;
Yang et al. 2010]. Despite the success of the previous work, it would be interesting to
see the influence effect of retweet behaviors from the neighbors on the user. All these
works do not consider how friends in one’s ego network influence the individual’s be-
havior. This paper finds that by merely using the influence locality factors, we can train
a simple predictive model to forecast users’ retweet behaviors with high accuracy.

9. CONCLUSION
In this paper, we study a novel phenomenon of social influence locality, which is also
proposed as a challenge in [Fernau et al. 2014; Liu et al. 2014]. We first conduct
a sampling test to provide evidence of the existence of influence locality, and then
formally define the influence locality function based on the observations of pairwise
influence and structure influence on retweet behaviors. One interesting discovery is
that retweet probability is negatively correlated with the number of connected circles
that are formed by the active neighbors.We evaluate the influence locality functions
through retweet behavior prediction by using the logistic regression model and the fac-
tor graphic model. Our experiments on retweet behavior prediction show that merely
using single influence locality function, we can obtain a F1-score that is comparable
with existing methods with a bunch of various features. In addition, we investigate
the effect of correlation feature between the neighbors to be predicted by using the
factor graphic model. The results show that the factor graphic model performs better
in Precision than the logistic regression model without the correlation feature.

As future work, it is interesting to study other functions to quantify the influence
locality. In addition, traditional influence models only consider the pairwise influence
between users, however, from the study in this paper, we know that the aggregated in-
fluence from the local ego network is different if the ego network structure constructed
by the active neighbors is different. Thus, how to define an influence model by incor-
porating the structure influence is an interesting problem to be studied in the future.
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