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ABSTRACT
GNN-based anomaly detection has recently attracted considerable

attention. Existing attempts have thus far focused on jointly learn-

ing the node representations and the classifier for detecting the

anomalies. Inspired by the recent advances of self-supervised learn-

ing (SSL) on graphs, we explore another possibility of decoupling

the node representation learning and the classification for anomaly

detection. We conduct a preliminary study to show that decoupled

training using existing graph SSL schemes to represent nodes can

obtain performance gains over joint training, but it may deteriorate

when the behavior patterns and the label semantics become highly

inconsistent. To be less biased by the inconsistency, we propose a

simple yet effective graph SSL scheme, called Deep Cluster Info-

max (DCI) for node representation learning, which captures the

intrinsic graph properties in more concentrated feature spaces by

clustering the entire graph into multiple parts. We conduct exten-

sive experiments on four real-world datasets for anomaly detection.

The results demonstrate that decoupled training equipped with a

proper SSL scheme can outperform joint training in AUC. Com-

pared with existing graph SSL schemes, DCI can help decoupled

training gain more improvements.
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• Information systems → Collaborative and social comput-
ing systems and tools; •Computingmethodologies→Knowl-
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Figure 1: An illustration of the inconsistency between the
behavior patterns and the label semantics. u1, u2, and u3 are
normal users but perform different behaviors. Similarly, u4,
u5, and u6 are fraudsters but perform different behaviors. In
contrast, (u1,u4), (u2,u5) and (u3,u6) have opposite labels, but
their behaviors are similar.
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1 INTRODUCTION
Anomaly detection, which aims to discover the rare occurrences in

datasets [2], has numerous high-impact applications in various do-

mains, such as detecting opinion deception and review spams [32],

credit card fraud [3], calling card and telecommunications fraud [7],

and misinformation [37]. The most promising developments have

been on discovering and incorporating the graph structural pat-

terns [2, 16, 23, 35], as graphs effectively describe the correlations

among inter-dependent users or objects that participate in the

fraudulent activities [2].

Recently, driven by the advances of graph neural networks

(GNNs) [5, 8, 11, 21, 45, 54], many attempts adopt GNNs for anomaly

detection [9, 28, 29, 47, 60]. The main idea of GNN-based anomaly

detection is to leverage the power of GNNs to learn expressive node

representations with the goal of identifying abnormal instances in

the embedding space. In this paper, we focus on detecting abnormal

users in the real-life graph structured data.

Despite the great success, existing GNN-based models jointly

learn the node representations and the classifier for detecting the

anomalies on the graph. Conceivably, such a joint training scheme

performs well if the behavior patterns expressed by node embed-

dings are discriminative to reflect the label semantics. But the cases

in reality may be far from satisfactory. Figure 1 illustrates an ex-

ample of user-rating-product graph, where the green (black) ones
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denote the normal users (fraudsters). For highlighting the struc-

tures of users, we fold the products by connecting two users if

they rate the same product. In the graph, users with similar be-

havior patterns are presented closer to each other, but their label

semantics are not always consistent with the behavior patterns.

For example, distant users locating in different communities of

the graph, such as the normal users (u1,u2,u3) or the fraudsters

(u4,u5,u6), behave differently from each other, even if they share

the same label. On the contrary, the users that are close to each

other, such as (u1,u4), (u2,u5) or (u3,u6), behave similarly but have

opposite labels. Such inconsistency between the behavior pat-
terns and the label semantics will result in hard instances
(the mentioned users in the above example) which put the

GNN encoder in a dilemma: to learn the intrinsic graph properties

or to capture the label semantics. Although GraphConsis [29] and

CARE-GNN [9] also explore the inconsistency issue, they take ef-

fort on designing promising GNN encoders. This paper explores

another way to alleviate the inconsistency’s impact by raising a

question: Shall we decouple the representation learning and the

classification for anomaly detection?

In order to answer the question, we conduct a preliminary study

to compare between the joint training and the decoupled training.

Inspired by the recent progress in self-supervised learning (SSL)

[10, 11, 20, 33], after decoupling, we adopt the graph SSL schemes

for unsupervised representation learning. The preliminary experi-

ment starts with a representative graph SSL scheme, Deep Graph

Infomax (DGI) [46], for encoding the global information into node

representations to represent the individual behavior patterns as

well as the normal pattern occupied by the majority. We conduct

the experiment on multiple anomaly detection tasks where the

learning difficulty gradually varies from hard to easy (with hard in-

stances removed gradually during the classification). We make the

observation that the joint training performswell on the easier
tasks, while the decoupled training is less biased by the hard
instances. Motivated by this observation, we conduct extensive

experiments on other datasets (cf. Table 2). However, decoupled

training with DGI offers limited performance gains. Such a result

drives us to explore the deeper reason. Since we make the conjec-

ture that inconsistency between the behavior patterns and the label

semantics impacts the anomaly detection, we explore how the de-

coupled training with DGI performs under different inconsistency

levels. Silhouette coefficient [36] is a popular measure for quan-

tifying the cohesion within the same class and separation across

classes, so we use the additive inverse of silhouette coefficient to

quantify the inconsistency level. The preliminary experimental re-

sults show that the decoupled training with DGI gains slight
or even negative improvements over the joint trainingwhen
the inconsistency is quite high. The above study implies that in-

consistency is an important but often neglected factor for learning

high-quality node representations.

Inspired by the above insights, we propose a new graph SSL

scheme, Deep Cluster Infomax (DCI), which inherits the strength

of DGI. In real life, normal users usually occupy the majority, so

we can represent the whole graph to approximate the distribution

of the normal users. From this perspective, DGI is a proper choice,

as it encodes the graph-level information into each node repre-

sentation to help identify the fraudsters from the normal users.

However, when users behave diversely, it would be difficult to rep-

resent a unique normal pattern. To overcome this limitation, we

introduce a clustering step to discover more concentrated feature

spaces. Then we encode normal patterns within clusters instead

of encoding a unique normal pattern in the whole graph. Conse-

quently, DCI reduces the impact from the inconsistency caused by

diverse behaviors across clusters.

This work makes the following observations and contributions:

• We conduct a study to compare between the joint training

and the decoupled training on GNN-based anomaly detec-

tion, which is helpful for understanding the merits and limi-

tations of decoupled training in practice.

• Our study reveals an intriguing phenomenon—inconsistency

between the behavior patterns and the label semantics highly

impacts the performance of graph representation learning—

that has rarely been discussed before.

• We suggest that decoupled training equipped with a proper

SSL objective can be an alternative way for effective anomaly

detection. And we develop a graph SSL scheme called DCI .

• We conduct extensive experiments on four real-world datasets.

The results demonstrate the advantages of decoupled train-

ing with DCI.

2 RELATEDWORK
Our work is closely related to graph neural network, graph-based

anomaly detection and self-supervised graph learning.

2.1 Graph Neural Networks
GNNs have made prominent progress in graph representation learn-

ing. The core idea behind GNNs is to update node representations by

aggregating messages from the local neighborhoods. The state-of-

the-art GNN models include GCN [21], GraphSAGE [11], GAT [45],

GIN [54], etc. These models differ from each other in the way to

aggregate the neighborhood information. For example, GCN [21]

propagates messages based on the graph Laplacian matrix in a

transductive manner. GraphSAGE [11] proposes an inductive learn-

ing framework, in which the aggregation function such as mean,

max or LSTM generates node embeddings by aggregating messages

from a node’s local neighborhood. GIN [54] adopts the sum-like

aggregation function, which is proved to be as powerful as the

Weisfeiler-Lehman graph isomorphism test [25]. Graph attentive

networks, with the pioneer work GAT [45], are studied to assign

different weights to different neighbors via attention mechanisms.

These models have been widely used in various real-world applica-

tions, such as recommendation systems [14, 51, 56], computational

biology [39, 40] as well as anomaly detection.

2.2 Graph-based Anomaly Detection
Early researches detect anomalies via dense block identification [16,

38, 41], iterative learning [23, 27, 30, 48, 49, 59] or belief propaga-

tion on graphs [1, 35]. Nevertheless, these early attempts usually

rely on the human-defined rules or features, which is not easy to

generalize to various datasets. Motivated by the success of GNNs,

modern algorithms tend to summarize the anomalous patterns au-

tomatically using GNNs. Examples include GAS [26], FdGars [50],

GraphConsis [29] and CARE-GNN [9] for review fraud detection,



GeniePath [28] and SemiGNN [47] for financial fraud detection,

FANG [31] for fake news detection, ASA [53] for mobile fraud de-

tection, and MTAD-GAT [61] for time-series anomaly detection.

These models extend the existing vanilla GCN [21], the graph at-

tention network [45, 52] or the heterogeneous GNNs [55] to tackle

the problem of anomaly detection. Existing attempts have focused

on proposing a promising GNN encoder for node representation

learning guided by the labels. In these models, the representation

learning and the classification are usually trained jointly. This work

explores another possibility of decoupling these two parts and

proposing a proper graph SSL scheme to capture the desired pat-

terns for anomaly detection.

2.3 Self-supervised Graph Learning
Self-supervised learning (pre-training) is a common and effective

scheme in the area of computer vision [6, 22, 58]. Among the SSL

schemes, contrastive learning (CL), raises a recent surge of interest

in visual representation learning [6, 13]. On a parallel note, CL-

based SSL schemes have also been investigated on graph data. The

early attempts of unsupervised graph learning such as GAE [20],

GraphSage [11], node2vec [10], deepwalk [33] and LINE [44], which

try to reconstruct the adjacency information of nodes, can be viewed

as a kind of “local contrast” between a node and its neighbors to

preserve the local homophily. The later proposed GCC [34], design-

ing subgraph-level instance discrimination to capture transferable

local structural patterns, can be viewed as a “local contrast” be-

tween multi-views of nodes (sampled ego-networks). Motivated

by DIM [15], DGI [46] and InfoGraph [43] have been proposed

to contrast between the node and the global graph, which can be

viewed as a “local-global contrast” to capture the global structure

information. In addition to graph structures, GPT-GNN [17] learns

node attributes by a generative SSL scheme. You et al. [57] and Has-

sani et al. [12] explore different types of graph data augmentations

upon DGI-based SSL scheme.

Our work differs from the above methods in two aspects. First,

we explore the effectiveness of decoupled training on anomaly de-

tection, and reveal that inconsistency is a key factor that impacts the

quality of representation learning. Although Kang et al. [18] have

also investigated the effectiveness of decoupled training in visual

representation learning, they target at solving the class imbalance

issue. To the best of our knowledge, we are the first to connect the

problem of inconsistency with decoupled training. Second, we pro-

pose DCI to contrast the local and the semi-global representations.

3 PROBLEM DEFINITION
In this section, we first formalize the problem of graph-based anom-

aly detection and then define the joint training and the decoupled

training, two training schemes for solving the problem.

Let G = (V ,A,X ) be a graph, where V denotes the set of nodes

andA denotes the adjacency matrix of nodes.X is the initial feature

matrix with x i ∈ Rd0
denoting the d0-dimensional initial feature

vector of vi . The nodes and links can be instantiated differently

according to the concrete applications. For example, in business

websites, for detecting the fraudsters who provide unreliable ratings

on products, the graph is a bipartite graph with users, products as

nodes and the user-rating-product relationships as links. Although

the nodes usually include users and objects, we only care about

detecting the abnormal users.

In this work, we represent nodes and the graph only based on

the graph structures, as the side information of nodes is not always

available, and the pure structure-dependent methods can general-

ize well across various applications. Without side information to

initialize the node features, we perform eigen-decomposition on

the normalized adjacency matrix s.t. D−1/2AD−1/2 = UΛU⊤ where

D is the degree matrix, and use the top eigenvectors in U as the

initial node features. The eigenvectors roughly capture the users’

behavior patterns, since they preserve the adjacency information.

Practically, other adjacency-based methods such as LINE [44] and

node2vec [10] can be used to initialize the node features.

The objective is to predict the abnormal nodes in a graph. How-

ever, since the labels are often arduously expensive to obtain, the

input graph G is usually partially labeled. Thus we formulate the

anomaly detection on a graph as follows:

Problem 1. Anomaly detection on a Graph. Given a partially

labeledG =
(
V ,A,X ,Y L

)
, where Y L is the set of the partial labels on

nodes and each yi ∈ Y is a binary value which takes value 1 if the
corresponding node vi is abnormal and 0 otherwise, the objective of
anomaly detection is to learn a predictive function:

F : G =
(
V ,A,X ,Y L

)
→ Y , (1)

where Y = Y L ∪YU with YU as the unobserved labels of the nodes in
G , which are to be inferred in the learning process. We use n to denote
the number of nodes.

Graph neural networks have recently been attempted to solve the

above defined problem, as introduced in Section 2.2. In most of these

models, the predictive function F is divided into a GNN encoder

д : V → Rd and a binary classifier f : Rd → {0, 1}, where д is to

encode the structure patterns into the node representations, and f
is usually performed on top of the node representations output by

д to distinguish the normal and abnormal nodes. Formally,

H = д (G,θ ) , Ŷ = f (H ,ϕ) , (2)

where H , a n × d matrix, denotes the node embeddings and Ŷ , a
|Y | × 1 matrix, denotes the predicted node labels. θ and ϕ are the

parameters to be learned. Most of the existing GNN models learn θ
and ϕ in a joint manner, which is defined as:

Definition 3.1. Joint training estimates the node labels via Ŷ =
f (д (G,θ ) ,ϕ) and then trains the parameters θ and ϕ through a

single supervised loss function LSL .

In contrast to the commonly adopted joint training, we propose

to use the decoupled training, a new training manner for anomaly

detection as follows:

Definition 3.2. Decoupled training decouples the representa-

tion learning and the classification. The first step estimates node

embeddings by H = д (G,θ ) and trains θ by an additional self-

supervised loss function LSSL which is independent from the ob-

served node labels Y L
. Then based on the learned θ , the second



step estimates the node labels by Ŷ = f (д (G,θ ) ,ϕ), and trains ϕ
as well as tunes θ by a supervised loss function LSL .

In the decoupled training, representation learning, which encour-

ages the encoder д to encapsulate desired features for the anomaly

detection target via self-supervised learning on the unlabeled graph

data, can be regarded as a pre-training process. Classification, which

encourages д and f to have strong semantic discrimination ability

via supervised learning on the labeled graph data, can be regarded

as a tuning process.

Given the above defined problem of anomaly detection and two

training schemes, the questions to be answered include:

• Which training scheme, the joint training or the decoupled

training, is more promising for anomaly detection?

• How to determine a properLSSL for representation learning

in decoupled training?

4 METHODOLOGY
In this section, we systematically study the performance of decou-

pled training in anomaly detection. More specifically, we compare

the decoupled training with the joint training given anomaly detec-

tion tasks with varying learning difficulties. We dig deeper into data

inconsistency, the possible reason that causes the hard instances to

learn, in order to explore the desired graph SSL for decoupled train-

ing. Finally, based on the observations, we propose Deep Cluster

Infomax, a novel graph SSL scheme for anomaly detection.

4.1 Preliminary
We introduce the instantiated graph encoder and the basic self-

supervised learning scheme to perform our study.

Graph Encoder д and Classifier f . We adopt GIN [54], a state-

of-the-art graph neural network, to instantiate the GNN encoder д
in the defined problem. GIN calculates the representation for each

node via a sum-like neighborhood aggregation function, i.e.,

h(l )i = MLP
(l ) ©«

(
1 + ϵ (l )

)
· h(l−1)

i +
∑

vj ∈N (vi )

h(l−1)

j
ª®¬ , (3)

where h(l )i ∈ R
d
is the embedding of node vi at the l-th layer, and

h(0)i = x i . N (vi ) is the set of neighboring nodes of nodevi . MLP de-

notes the multi-layer perceptron. ϵ (l ) is either a learnable parameter

or a fixed scalar. We stack L layers to obtain the final node represen-

tation h(L)i . Compared with other general GNNs [21, 45], the simple

sum-like aggregator in GIN is able to encapsulate the neighborhood

homophily as well as the structural homophily, which are both vital

for representing the behavior patterns. Compared with the specific

GNNs for anomaly detection [9, 28, 29, 47], GIN can generalize to

more datasets (Table 2 illustrates that GIN outperforms other GNNs

on most datasets).

We instantiate f based on a linear mapping followed by a non-

linear activation function, i.e.,

pi = σ (W ⊤h(L)i + b), (4)

where σ is the sigmoid activation function,W and b are the param-

eters to be learned, and pi is the predicted suspicious score (i.e.,

abnormal score) of node vi .

BasicLSL . We adopt cross-entropy (CE) loss, the most popular one

in supervised learning, to instantiate the supervised loss function

LSL in both the joint training and the decoupled training, i.e.,

LCE = −
1

|Y L |

|Y L |∑
i=1

(yi · logpi + (1 − yi ) · log (1 − pi )) , (5)

Basic LSSL . We adopt Deep Graph Infomax (DGI) [46], a state-

of-the-art graph SSL scheme, to instantiate the SSL loss function

LSSL in the decoupled training, i.e.,

LDGI = −
1

2n

n∑
i=1

(
EG logD(h(L)i , s) + EG̃ log(1 − D( ˜h

(L)
i , s))

)
,

(6)

where D is a discriminator that outputs the affinity score of each

local-global (i.e., node-graph) pair. The graph G̃, generated by a

row-wise shuffling of the initial feature matrixX , provides the node

representation
˜h
(L)
i that can be paired with the graph representation

s as a negative sample.

For computing the graph representation s , we follow DGI to

average all the nodes’ representations and then apply a sigmoid

activation function on the pooled result, i.e.

s = σ

(
1

n

n∑
i=1

h
(L)
i

)
. (7)

Choosing DGI is inspired by the definition of “anomaly”:

Definition 4.1. Anomalies are the instances which stand out as

being dissimilar to all others [4].

The above definition of anomaly implies that understanding

how the majority act (i.e., the normal pattern) is vital for anomaly

detection. Since the normal instances usually occupy the majority

of the data, we can represent the whole graph to approximate

the distribution of the normal instances. In view of this, DGI is

a proper choice that enables node representations to capture the

global information of the entire graph. Henceforth, we abbreviate

h(L)i to hi for simplicity.

4.2 Why Decoupled Training?
Figure 1 shows an example of graph data, where the hard instances

increase the difficulty of anomaly detection. In this section, we study

the necessity of decoupled training by exploring how the joint train-

ing and the decoupled training perform when the learning difficulty

is varied. To answer this question, we define the learning difficulty,

design the experimental protocol and present the observed results.

Learning Difficulty. It is non-trivial to determine the learning

difficulty of a dataset by the raw features and labels of the instances

in it. Instead, we first jointly train д and f using all the labeled users

and obtain the predicted suspicious scores. Specifically, we conduct

the joint training for 100 epochs, and use the averaged predicted



suspicious score over the 100 epochs for each user. Then we sort

the averaged predictive probabilities that quantify how anomalous

each user is in descending order. The top ρ (%) normal users and

the bottom ρ (%) fraudsters are viewed as the hard instances to be

predicted. Adjusting the value of ρ and removing the correspond-

ing hard instances during classification leads to various learning

difficulties. Note that we encode node representations based on the

whole graph structure, while conduct prediction on the datasets of

various learning difficulties.

Experimental Protocol. Using GIN in Eq.(3) as the graph en-

coder, the 1-layer MLP in Eq.(4) as the classifier, we perform joint

training and decoupled training on different tasks controlled via

ρ. Specifically, the first scheme jointly trains д and f by a unique

cross-entropy loss in Eq.(5), while the second scheme first pre-trains

д by the DGI loss in Eq.(6) and then tunes д and f together by the

cross-entropy loss. We run 50 epochs for the pre-training model

and run 100 epochs to train the classifier. Finally, we report the

averaged best AUC score over 10 folds.

We construct six datasets from Reddit by varying its learning

difficulty level ρ (%) from 0 to 10 with interval 2, where Reddit

is a benchmark consisting of posts made by users on subreddits

using the banned users from the website Reddit as the ground-truth

anomalies [24].

Decoupled Training Helps Address Hard Instances. The re-

sults are summarized in Figure 2(a), from which we make an impor-

tant observation: compared with the joint training, the decoupled
training is less biased by the hard instances. The AUC perfor-

mance of joint training increases from 0.720 to 0.859 with varying

ρ from 0 to 10, which indicates the hard instances impact the learn-

ing process a lot. On the easier tasks (corresponding to a larger

ρ), the decoupled training has comparable performance with the

joint training. But when the dataset becomes difficult to learn (cor-

responding to a smaller ρ), the performance gain derived by the

decoupled training tends to increase (derives 3.1% relative AUC

gain when ρ=0). Such an intriguing observation implies that de-

coupling representation learning and classification for anomaly

detection can lower the negative impact caused by hard instances.

Motivated by the above observation, we conduct extensive experi-

ments on other datasets (cf. Table 2), but we note that the power of

decoupled training with DGI could be limited (derives less than
1.5% relative AUC gains over the joint training on the Wiki, Alpha

and Amazon). Such a result drives us to explore the deeper reason

and the possible limitation of DGI.

4.3 Is Decoupled Training Stably Better?
Definition 4.2. Inconsistency: the behavior patterns and the

label semantics disagree with each other.

Various limitations of the data distributions such as label imbal-

ance [18] and scarce label [42] may increase the learning difficulty

of a dataset, but we make the conjecture that the inconsistency be-

tween the behavior patterns and the label semantics also leads to the

learning difficulty. To verify our conjecture, we explore how the de-

coupled training with DGI performs under different inconsistency

levels. To answer the question, we formulate the inconsistency,

design the experimental protocol and present the observed results.
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Figure 2: Preliminary experiments. (a) Performance of dif-
ferent training schemes over various learning difficulties; (b)
Relative performance gains obtained by decoupled training
over different inconsistency levels.

Inconsistency. A dataset is more consistent if the behavior pat-

terns of the same-labeled users are more similar, and those between

the users with opposite labels are more different. Intuitively, sil-

houette coefficient [36], a clustering metric which measures the

cohesion within the same class and separation across classes, can

help formulate the inconsistency. We use the additive inverse of

silhouette coefficient to represent inconsistency η. Since there are
only two classes (i.e., normal and abnormal), η can be defined as:

η = −
1

|V |

|V |∑
i=1

bi − ai
max{bi ,ai }

, (8)

ai =
1

|Vi |

∑
vj ∈Vi

∥x i − x j ∥
2,Vi = {vj : yj = yi },

bi =
1

|V̄i |

∑
vj ∈V̄i

∥x i − x j ∥
2, V̄i = {vj : yj , yi },

where x i and x j are the initial representations of users vi and vj
respectively. ai is the average distance ofvi to all the other users of
the same label, and bi is the average distance of vi to all the other

users of the opposite label. When ai is smaller and bi is bigger,
vi is more consistent to the users of the same label. More users

satisfy the property will result in a larger silhouette coefficient and

a smaller inconsistency.

Experimental Protocol. We perform joint training and decou-

pled training on different datasets controlled via η. The evaluation
process also follows the 10-fold evaluation.

We construct four separate datasets from Reddit with different η.
Specifically, we performMETIS [19], a graph partition algorithm, to

partition the the original graph into four sub-graphs with η (1e-2) ∈

{-1.2, -0.5, 0.4, 3.4}. With METIS, we can construct multiple datasets

with different inconsistency levels as well as preserving the original

graph structures within each dataset as much as possible.

DGI Helps Less on the Highly Inconsistent Data. The relative
performance gains obtained by decoupled training with DGI are

shown in Figure 2(b), from which we observe that compared with

joint training, decoupled training with DGI may not always
improve, and even brings negative influence when the data
is highly inconsistent. The figure shows decoupled training with



DGI obtains very slight or even negative AUC gains on three of the

four datasets. Only on the less inconsistent dataset (corresponding

to η=-1.2), the decoupled training attains 3.1% relative AUC gain

over the joint training. In other words, it is challenging for DGI

to summarize a proper normal pattern in the highly inconsistent

dataset. Thus, a more effective graph SSL scheme is demanded

addressing such a problem.

4.4 The Proposed SSL Scheme DCI
We propose a new self-supervised scheme, called Deep Cluster

Infomax (DCI), for anomaly detection. Similar to DGI, DCI also

encodes the normal pattern of the majority following Definition

4.1. However, when users behave quite diversely, a unique normal

pattern is difficult to be represented. Fortunately, we observe that

users can be naturally partitioned into different clusters, and the

behavior patterns within the same cluster are often much more

concentrated than those in the whole graph. As a result, the incon-

sistency presented by the same labels but diverse behavior patterns

in the whole graph (e.g., (u1,u2,u3) or (u4,u5,u6) in Figure 1) will

be reduced within a small cluster. Meanwhile, the inconsistency

presented by the opposite labels but close behavior patterns (e.g.,

(u1,u4), (u2,u5) or (u3,u6) in Figure 1) will also be reduced, as

the distance between these users is amplified when the context

is restricted into a small cluster. In view of this, we perform the

cluster-level summary instead of the graph-level summary.

The first step of DCI is to partition the given graphG into K clus-

ters [C1,C2, · · · ,CK ], where each clusterCk containsnk nodes. The

node set in Ck is denoted as Vk . Note that for the user-interacting-
object graphs, the cluster Ck contains both users and objects. We

apply the classic K-Means algorithm to cluster all nodes based on

the node features X . Since X is instantiated by the top eigenvectors

of the normalized adjacency matrix, it preserves the neighborhood

proximity. In this way, the users who behave similarly tend to be

clustered into the same cluster. A self-defined method is designed

to help determine the number of clusters K , and the details are

explained in Section 5.5.

After clustering, we compute the cluster-level representation sk
for each cluster to summarize how the majority in Ck act, i.e.,

sk = σ
©« 1

nk

∑
vi ∈Vk

hi
ª®¬ . (9)

For each cluster Ck , we encode this semi-global representation

sk into the node representations via the following loss function:

LkDCI = −
1

2nk

∑
vi ∈Vk

(
ECk logD(hi , sk ) + EC̃k

log(1 − D( ˜hi , sk ))
)
,

(10)

where D is a discriminator that outputs the affinity score of each

local-semi-global (i.e., node-cluster) pair. Similar to DGI, node rep-

resentation
˜hi is paired with the cluster representation sk as a

negative sample.

The final loss function of DCI is the average of the losses of the

K clusters, i.e.,

LDCI =
1

K

K∑
k=1

LkDCI . (11)

In practice, we re-cluster the nodes based on the node embed-

dings after every t training epochs. Algorithm 1 gives the pseu-

docode for DCI.

Algorithm 1: Deep Cluster Infomax

Input :Graph G = (V ,A,X ), Number of clusters K ,
Number of training epochs t , Number of

re-clustering epochs t .
Output :Optimized GNN encoder д

1 Initialize clusters [C1,C2, · · · ,CK ] = K-Means(X );

2 Initialize the parameters θ and ω for the encoder д and

the discriminator D ;

3 for epoch ← 1 to t do
4 H = д (G,θ );

5 LDCI =
1

K
∑K
k=1
LkDCI (H ,Ck ,ω);

6 θ , ω ←Adam(LDCI );

7 if t mod t == 0 then
8 [C1,C2, · · · ,CK ] = K-Means(д (G,θ ))

Return :encoder д

4.5 Discussions and Summaries
We discuss why the decoupled training (DCI) can work compared

with other choices.

Compared with joint training supervised by the labeled data,

the decoupled training additionally trains the GNN encoder self-

supervised by the intrinsic graph structures beforehand, which can

be less biased by the data inconsistency.

In terms of the decoupled training for anomaly detection, exist-

ing graph SSL schemes offer limited benefits. For example, GAE [20]

and GraphSAGE [11] reconstruct the adjacency matrix following

the neighborhood proximity assumption, which can be hurt when

too many interactions exist between the normal users and the fraud-

sters. GCC [34] which contrasts multi-views of nodes (sampled

ego-networks) to capture transferable structural patterns across

graphs, over-emphasizes the structural homophily. DGI [46] con-

trasts the whole graph with the node in it to encode the graph-level

information into each node’s representation. The graph-level em-

bedding reveals the normal pattern occupied by the majority (i.e.,

the normal nodes), so it helps imply how far a node deviates from

what is normal. DCI can be viewed as cluster-based DGI. Compared

with DGI, the semi-global context encoded by DCI is less diverse,

consequently alleviating the impact induced by the inconsistency

between the behavior patterns and the label semantics.

5 EXPERIMENTAL EVALUATION
In this section, we present the results of different models to identify

fraudulent users on real-world datasets. Particularly, we mainly

answer the following research questions:

• RQ1: How does the decoupled training perform compared with

the joint training?

• RQ2: How does DCI perform compared with other state-of-the-

art graph SSL schemes?



Table 1: Statistics of the datasets.

Graph #Users(% normal, abnormal) #Objects #Edges

Reddit 10,000 (96.34%, 3.66%) 984 78,516

Wiki 8,227 (97.36%, 2.64%) 1,000 18,257

Alpha 3,286 (61.21%, 38.79%) 3,754 24,186

Amazon 27,197 (91.73%, 8.27%) 5,830 52,156

• RQ3: How does the decoupled training perform compared with

the multi-task learning?

• RQ4: How to determine the number of clusters for DCI?

5.1 Experimental settings

Datasets. We evaluate on four real-world user-object graphs. De-

tail statistics about these datasets are listed in Table 1.

• Reddit [24] is a user-subreddit graph, which consists of one

month of postsmade by users on subreddits. This dataset contains

ground-truth labels of banned users from Reddit.

• Wiki [24] is an editor-page graph, which describes one month

of edits on Wikipedia pages. This dataset contains public ground-

truth labels of banned users.

• Alpha [23] is a user-user trust graph of Bitcoin users trading

on the platform Alpha. This graph is made bipartite by splitting

each user into a “rater” with all its outgoing edges and an “object”

with all incoming edges. 214 users in this dataset are labeled.

• Amazon [23] is a user-product graph, where the edges describe

users’ rating behaviors. 278 users in this dataset are labeled.

Specifically, the graphs used in our experiments are unweighted,

where the edge represents a user has ever interacted with an object.

Amazon is extracted from a large user-product graph [23], which

contains 256,059 users, 74, 258 products and 560,804 interactions.

We use METIS [19] to partition the original Amazon dataset into 20

sub-graphs, and merge two sub-graphs to simulate a graph which

has higher inconsistency. METIS partitions the graph according to

the interconnections between nodes, so it preserves the original

graph structure within the sampled dataset as much as possible.

Evaluation Protocols. In practice, the training data of anomaly

detection is usually class-imbalance, that is, the instance-rich class

(i.e. the class of normal users) dominates during the training proce-

dure. As a result, all the predicted suspicious scores tend to be small,

which makes it difficult to set a proper threshold for classifying

the fraudsters and the normal users. So we adopt the widely used

metric AUC to consider all the possible thresholds for classification.

AUC measures the probability that a randomly sampled fraudster

has a higher suspicious score than a randomly sampled normal

user. For a fair comparison, we conduct 10-fold evaluation on the

Reddit, Wiki and Alpha. Specially, we conduct 5-fold evaluation on

the Amazon, since this dataset has limited labeled fraudsters.

Baselines. We compare with two categories of baselines. First,

Joint training algorithms working in an end-to-end manner are

compared to show the effectiveness of decoupled training. Among

them, CARE-GNN [9], which applies reinforcement learning to

filter noisy neighbors, is a state-of-the-art GNN model for anomaly

detection. Other GNN-based anomaly detection models such as

GraphConsis [29] and Semi-GNN [47] have been shown to be less

useful than CARE-GNN, thus they are ignored in the experiments.

GAT [45] and GeniePath [28] are both graph attentive networks.

GAT calculates attentions for one-hop neighbors, and GeniePath

extends them to multi-hop neighbors. GeniePath has shown ef-

fectiveness on malicious account detection in Alipay. GIN [54]

proposes a powerful feature aggregation function to effectively

preserve the structure homophily.

Second, SSL schemes for decoupled training are compared to

show the superiority of DCI. Among them, Graph Auto-encoder
(GAE) [20] andRandomwalk-based objective (RW) [10, 11] re-
construct the one-hop or the multi-hop adjacency information (ob-

tained by local randomwalks) between nodes.Graph Contrastive
Coding (GCC) [34] and Deep Graph Infomax (DGI) [46] per-
form contrastive learning between node-node pairs or graph-node

pairs. The four SSL baselines are popular and have shown effec-

tiveness on various real-world applications. GAE and RW target

on preserving the local adjacency between nodes. GCC and DGI

allow to discover the structural similarities in a global environment

– for example, distant nodes with similar structural roles. Distinct

from the above baselines, DCI preserves the structural similarities

in a semi-global context. It is worth noting that we do not compare

with GPT-GNN [17], because our model only involves the structure

information, while GPT-GNN requires the input of node attributes.

Parameter Settings. We use input feature dimension (64), node

representation dimension (128), number of GNN layers (2), learning

rate (0.01) and optimizer (Adam) for all models. ϵ in Eq.3 is set to

be 0. The source code of CARE-GNN fixes the number of GNN

layer to be 1, so we use this default setting. The number of re-

clustering epochs t is set to be 20. For the SSL pre-training, we

fix the number of training epochs to be 50. Specially, we adopt

the early stopping strategy in the decoupled training with RW,

since we found too many training epochs can harm this model’s

performance. To better analyze different SSL schemes, we unify

their backbones as the GIN’s encoder. For the classification, we

record the best testing result after 100 epochs on each fold, then

report the averaged best AUC score over different folds.

Code Implementation. For CARE-GNN, GIN, DGI and GCC,

we use the source code provided by their authors. For GAT and

GeniePath, we use the open-source implementation
1
. We modified

these codes to make them adapt to our tasks. We implement DCI

with Pytorch. The source code of DCI is available on Github
2
.

5.2 Overall Evaluation
According to the results shown in Table 2, we summarize the fol-

lowing conclusions: (1) Decoupled training contributes to the
anomaly detection. All the decoupled models use GIN’s encoder

as their backbones. Compared with GIN (joint training), most of

the decoupled models perform better. On the Amazon, decoupled

training with DCI obtains 6.4% relative performance gain over the

joint training. (2) DCI is an effective graph SSL scheme for de-
coupled training. Compared with other SSL schemes, DCI helps

decoupled training attain more performance gains on most datasets.

1
https://github.com/shawnwang-tech/GeniePath-pytorch

2
https://github.com/wyl7/DCI-pytorch



Table 2: Overall evaluation on four real-world datasets.

Reddit Wiki Alpha Amazon

Joint

CARE-GNN 0.700 0.702 0.802 0.729

GAT 0.738 0.681 0.848 0.696

GeniePath 0.720 0.689 0.849 0.738

GIN 0.720 0.727 0.884 0.761

Decoupled

GAE 0.730 0.714 0.884 0.806

RW 0.728 0.740 0.908 0.782

GCC 0.669 0.695 0.865 0.733

DGI 0.743 0.737 0.884 0.771

DCI (ours) 0.746 0.762 0.907 0.810

Inconsistency η (1e-2) -0.676 0.841 - -

Note: All the decoupled models use GIN’s encoder as the backbone.

Table 3: Comparison between the joint training (GIN) and
the decoupled training (DGI and DCI) on datasets which are
increasingly easier.

ρ (%) 1 2 3 4 5

Reddit
GIN (joint) 0.734 0.755 0.774 0.787 0.803

DGI (decoupled) 0.755 0.771 0.777 0.790 0.798

DCI (decoupled) 0.756 0.778 0.783 0.790 0.800

Wiki
GIN (joint) 0.745 0.757 0.781 0.803 0.808

DGI (decoupled) 0.759 0.769 0.790 0.797 0.816

DCI (decoupled) 0.777 0.788 0.817 0.822 0.834

Alpha
GIN (joint) 0.886 0.905 0.923 0.933 0.940

DGI (decoupled) 0.893 0.907 0.928 0.948 0.955

DCI (decoupled) 0.907 0.906 0.936 0.939 0.947

Amazon
GIN (joint) 0.764 0.781 0.783 0.803 0.799

DGI (decoupled) 0.780 0.797 0.796 0.817 0.793

DCI (decoupled) 0.805 0.838 0.835 0.845 0.844

Note: All the models use GIN’s encoder as the backbone.

Table 4: Evaluation of the multi-task learning.

Reddit Wiki Alpha Amazon

Joint GIN 0.720 0.727 0.884 0.761

Multi-task
GAE 0.726 0.705 0.904 0.766

DGI 0.647 0.664 0.891 0.806

DCI 0.675 0.670 0.893 0.803

Note: All the multi-task models use GIN’s encoder as the backbone.

As an extension of DGI, DCI demonstrates the necessity of clus-

tering. In other words, given a more concentrated feature space,

it would be easier to figure out the differences between the nor-

mal instances and the anomalies. (3) Adjacency information is
useful for anomaly detection. We observe that GAE and RW

also perform well across different datasets. On the Alpha, RW at-

tains the best performance. However, the effectiveness of GCC is

limited. In the traditional studies [1, 23], user behaviors (i.e., who

review/edit/rate what) are regarded as important information for

anomaly detection. The user behaviors are described by the edges

in a graph. Such information is preserved by GAE and RW, but is ig-

nored by GCC which emphasizes the structural similarity between

nodes. In view of this, decoupled training with adjacency-based self-

supervision deserves further study. DCI conducts pre-clustering

according to the node features decomposed from the normalized ad-

jacency matrix, so it implicitly captures the adjacency information.

(4) A simple GNN encoder can also performwell. CARE-GNN
and GeniePath are two promising algorithms for the graph-based

anomaly detection. They design complicated graph convolutions

to solve the challenges of anomaly detection. However, we find

that these models need more training epochs to converge, and GIN

outperforms them on most datasets. We suggest that decoupled

training composed of the GIN’s encoder and a proper SSL objec-

tive can be an alternative way for effective anomaly detection. (5)
Decoupled trainingwithDCI shows promising performance
on the more inconsistent dataset. We can compute the incon-

sistency levels for the Reddit and Wiki, as users in the two datasets

are fully labeled. DCI shows only 0.4% relative AUC gain over DGI

on the Reddit, but derives 3.4% relative AUC gain over DGI on the

Wiki. Wiki is the more inconsistent dataset, on which DCI shows

more performance gains over DGI.

5.3 Study of DCI over Learning Difficulty
In this section, we take insight into: how decoupled training with

DCI helps address the hard instances. We follow the experimental

protocols in Section 4.2 to vary the learning difficulty via controlling

ρ (%) ∈ {1, 2, 3, 4, 5} and report the performance of joint training

(GIN) and decoupled training (DGI and DCI).

As summarized in Table 3, on the datasets consisting ofmore hard

instances (corresponding to a smaller ρ), the decoupled training

brings more performance gains over the joint training. Compared

with DGI, DCI contributes more to the decoupled training. When

the dataset becomes easier to learn (corresponding to a larger ρ),
the decoupled training only obtains comparable performance with

the joint training. That is to say, besides the inconsistency, the

effectiveness of anomaly detection could be impacted by other

factors, such as the label imbalance and scarce label. These problems

deserve further study.

5.4 Comparison with the Multi-task Learning
We compare with the multi-task learning, which also utilizes the

self-supervision. The final loss of multi-task learning can be formu-

lated as: LMTL = α · LSL + (1 − α) · LSSL , where α is the balanc-

ing term between the cross-entropy loss and the self-supervised

loss. We instantiate LSSL with the objective of GAE/DGI/DCI. α is

searched from 0.1 to 0.9 with interval 0.1. In our experiments, the

objectives of RW and GCC are optimized under the mini-batch set-

ting, while the cross-entropy loss is optimized under the full-batch

setting. Thus we do not consider the objectives of RW and GCC in

this section.

As shown in Table 4, the multi-task learning is able to outper-

form the joint training, but does not always bring the positive

improvements. Even though the multi-task learning outperforms

the joint training on some occasions, the decoupled training still
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Figure 4: Convergence study (best seen in color).

shows advantages over the multi-task learning. We also observe

that using LDGI or LDCI for multi-task learning results in very

poor performance on the Reddit and Wiki, while LGAE is less vul-

nerable on the two datasets. Compared with GAE which preserves

the local adjacency, DGI and DCI allow to learn more implicit and

expressive structural patterns. Thus using LDGI or LDCI could

amplify the inconsistency between the structural patterns and the

label semantics.

5.5 Study of the Clustering Number
As the clustering plays a pivotal role in DCI, we investigate how

to determine the number of clusters. Due to the various behav-

ior patterns of users, it is not suitable to choose the clustering

number K only according to the results on a validation set. Thus

we suggest to narrow the search space of K before the learning

process. We adopt inertia that measures how internally coherent

clusters are to help narrow the search space. Inertia is computed

by

∑ |V |
i=1

minµ j ∈C ∥x i − µ j ∥
2
, whereC is the set of disjoint clusters

and µ j is the embedding of the j-th cluster center.

Specifically, we calculate the inertia under different clustering

numbers K ∈ {2, 3, . . . ,K∗} (K∗ is the maximal clustering number

and is set to be 50), and compute τK which denotes the inertia

gap between K and K + 1. Then given r consecutive inertia gaps
{τK ,τK+1, · · · ,τK+r−1} (r is set to be 15), we calculate the standard
deviation στ . The optimal value of K tends to locate at the interval,

where στ begins to be stable. Taking the Reddit and Wiki as the ex-

amples, we show στ under different clustering numbers in Figure 3.

On each dataset, the purple bar corresponds to the clustering num-

ber that leads to the best performance. We can see that the optimal

value of K matches the above principle. Note that the optimal value

of K could be somewhat different under different environments

(e.g., different versions of PyTorch). In practice, we suggest to use

the above principle to set an initial clustering number beforehand,

then determine the final clustering number by searching around

the initial one according to the results on a validation set. In our

experiments, the datasets are not very large, so the results on a

validation set could be less instructive. In light of this, we directly

report the performance under the optimal value of K , reflecting the
potential power of DCI. In the future work, we will explore a more

effective way to find the optimal clustering number.

5.6 Convergence Study
Taking the Reddit and Wiki as the examples, we explore the conver-

gence of DCI. Here we mainly compare with GIN (joint) and DGI

(decoupled). These models use the GIN’s encoder as the backbone.

Different from the evaluation setting used in the above experi-

ments, here we report the testing AUC averaged over 10 folds at

each training epoch.

From Figure 4, we observe that: on both datasets, the models

using decoupled training tend to converge faster than the models

using joint training. Benefiting from the SSL step in the decoupled

training, we can obtain a better parameter initialization for the

following classification to speed up the convergence. Besides, we

observe that the convergence trends of different models are similar.

That is because they all adopt the cross-entropy loss for the classifier

optimization. Therefore, to further improve the effectiveness of

anomaly detection, other objectives are also worth studying.

6 CONCLUSION
This work piloted studies on performance of decoupled training for

anomaly detection, and made intriguing findings. At the heart of

these findings is the inconsistency between the structural patterns

and the label semantics, which is identified to be a vital factor that

impacts the representation learning. It provides a new perspective

for understanding the SSL. This work further developed a new

graph SSL scheme DCI by injecting a clustering step to reduce the

data inconsistency. We believe that decoupled training composed of

the GIN’s encoder and a proper SSL objective can be an alternative

way for effective anomaly detection. The findings and DCI develped

here could be inspiring for the future research on representation

learning, even not restricted to anomaly detection.
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