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ABSTRACT
This paper addresses several key issues in the ArnetMiner system,
which aims at extracting and mining academic social networks.
Specifically, the system focuses on: 1) Extracting researcher pro-
files automatically from the Web; 2) Integrating the publication
data into the network from existing digital libraries; 3) Modeling
the entire academic network; and 4) Providing search services for
the academic network. So far, 448,470 researcher profiles have
been extracted using a unified tagging approach. We integrate pub-
lications from online Web databases and propose a probabilistic
framework to deal with the name ambiguity problem. Further-
more, we propose a unified modeling approach to simultaneously
model topical aspects of papers, authors, and publication venues.
Search services such as expertise search and people association
search have been provided based on the modeling results. In this
paper, we describe the architecture and main features of the system.
We also present the empirical evaluation of the proposed methods.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Text Mining, Digital
Libraries; H.2.8 [Database Management]: Database Applications

General Terms
Algorithms, Experimentation

Keywords
Social Network, Information Extraction, Name Disambiguation,
Topic Modeling, Expertise Search, Association Search

1. INTRODUCTION
Extraction and mining of academic social networks aims at pro-

viding comprehensive services in the scientific research field. In an
academic social network, people are not only interested in search-
ing for different types of information (such as authors, conferences,
and papers), but are also interested in finding semantics-based in-
formation (such as structured researcher profiles).
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Many issues in academic social networks have been investigated
and several systems have been developed (e.g., DBLP, CiteSeer,
and Google Scholar). However, the issues were usually studied
separately and the methods proposed are not sufficient for mining
the entire academic network. Two reasons are as follows: 1) Lack
of semantics-based information. The social information obtained
from user-entered profiles or by extraction using heuristics is some-
times incomplete or inconsistent; 2) Lack of a unified approach to
efficiently model the academic network. Previously, different types
of information in the academic network were modeled individually,
thus dependencies between them cannot be captured accurately.

In this paper, we try to address the two challenges in novel ap-
proaches. We have developed an academic search system, called
ArnetMiner (http://www.arnetminer.org). Our objective
in this system is to answer the following questions: 1) how to au-
tomatically extract researcher profiles from the Web? 2) how to
integrate the extracted information (e.g., researchers’ profiles and
publications) from different sources? 3) how to model different
types of information in a unified approach? and 4) how to provide
powerful search services based on the constructed network?

(1) We extend the Friend-Of-A-Friend (FOAF) ontology [9] as
the profile schema and propose a unified approach based on Condi-
tional Random Fields to extract researcher profiles from the Web.

(2) We integrate the extracted researcher profiles and the crawled
publication data from the online digital libraries. We propose a uni-
fied probabilistic framework for dealing with the name ambiguity
problem in the integration.

(3) We propose three generative probabilistic models for simul-
taneously modeling topical aspects of papers, authors, and publica-
tion venues.

(4) Based on the modeling results, we implement several search
services such as expertise search and association search.

We conducted empirical evaluations of the proposed methods.
Experimental results show that our proposed methods significantly
outperform the baseline methods for dealing with the above issues.

Our contributions in this paper include: (1) a proposal of a uni-
fied tagging approach to researcher profile extraction, (2) a pro-
posal of a unified probabilistic framework to name disambiguation,
and (3) a proposal of three probabilistic topic models to simultane-
ously model the different types of information.

The paper is organized as follows. In Section 2, we review the
related work. In Section 3, we give an overview of the system.
In Section 4, we present our approach to researcher profiling. In
Section 5, we describe the probabilistic framework to name disam-
biguation. In Section 6, we propose three generative probabilistic
models to model the academic network. Section 7 illustrates sev-
eral search services provided in ArnetMiner based on the modeling
results. We conclude the paper in Section 8.



2. RELATED WORK

2.1 Person Profile Extraction
Several research efforts have been made for extracting person

profiles. For example, Yu et al. [32] propose a two-stage extraction
method for identifying personal information from resumes. The
first stage segments a resume into different types of blocks and the
second stage extracts the detailed information such as Address and
Email from the identified blocks. However, the method formalizes
the profile extraction as several separate steps and conducts extrac-
tion in a more or less ad-hoc manner.

A few efforts also have been placed on the extraction of contact
information from emails or from the Web. For example, Kristjans-
son et al. [19] have developed an interactive information extraction
system to assist the user to populate a contact database from emails.
In comparison, profile extraction consists of contact information
extraction as well as other different subtasks.

2.2 Name Disambiguation
A number of approaches have been proposed to name disam-

biguation. For example, Bekkerman and McCallum [6] present two
unsupervised methods to distinguish Web pages to different per-
sons with the same name: one is based on the link structure of the
Web pages and the other is based on the textural content. However,
the methods cannot incorporate the relationships between data.

Han et al. [15] propose an unsupervised learning approach using
K-way spectral clustering. Tan et al. [27] propose a method for
name disambiguation based on hierarchical clustering. However,
this kind of methods cannot capture the relationships either.

Two supervised methods are proposed by Han et al. [14]. For
each given name, the methods learn a specific classification model
from the training data and use the model to predict whether a new
paper is authored by a specific author with the name. However, the
methods are user-dependent. It is impractical to train thousands of
models for all individuals in a large digital library.

2.3 Topic Modeling
Considerable work has been conducted for investigating topic

models or latent semantic structures for text mining. For example,
Hofmann [17] proposes the probabilistic latent semantic indexing
(pLSI) and applies it to information retrieval (IR).

Blei et al. [8] introduce a three-level Bayesian network, called
Latent Dirichlet Allocation (LDA). The basic generative process of
LDA closely resembles pLSI except that in pLSI, the topic mixture
is conditioned on each document while in LDA, the topic mixture
is drawn from a conjugate Dirichlet prior that remains the same for
all documents.

Some other work has been conducted for modeling both author
interests and document contents together. For example, the Author
model [21] is aimed at modeling the author interests with a one-to-
one correspondence between topics and authors. The Author-Topic
model [25] [26] integrates the authorship into the topic model and
can find a topic mixture over documents and authors.

Compared with the previous topic modeling work, in this pa-
per, we propose a unified topic model to simultaneously model the
topical aspects of different types of information in the academic
network.

2.4 Academic Search
For academic search, several research issues have been inten-

sively investigated, for example expert finding and association search.
Expert finding is one of the most important issues for mining so-

cial networks. For example, both Nie et al. [24] and Balog et al.

[4] propose extended language models to address the expert finding
problem. From 2005, Text REtrieval Conference (TREC) has pro-
vided a platform with the Enterprise Search Track for researchers
to empirically assess their methods for expert finding [13].

Association search aims at finding connections between people.
For example, the ReferralWeb [18] system helps people search and
explore social networks on the Web. Adamic and Adar [1] have
investigated the problem of association search in email networks.
However, existing work mainly focuses on how to find connections
between people and ignores how to rank the found associations.

In addition, a few systems have been developed for academic
search such as, scholar.google.com, libra.msra.cn, citeseer.ist.psu,
and Rexa.info. Though much work has been performed, to the best
of our knowledge, the issues we focus on in this work (i.e., profile
extraction, name disambiguation, and academic network modeling)
have not been sufficiently investigated. Our system addresses all
these problems holistically.

3. OVERVIEW OF ARNETMINER
Figure 1 shows the architecture of our ArnetMiner system. The

system mainly consists of five main components:

1. Extraction: it focuses on extracting researcher profiles from
the Web automatically. It first collects and identifies one’s
homepage from the Web, then uses a unified approach to ex-
tract the profile properties from the identified document. It
extracts publications from online digital libraries using rules.

2. Integration: it integrates the extracted researchers’ profiles
and the extracted publications by using the researcher name
as the identifier. A probabilistic framework has been pro-
posed to deal with the name ambiguity problem in the inte-
gration. The integrated data is stored into a researcher net-
work knowledge base (RNKB).

3. Storage and Access: it provides storage and index for the ex-
tracted/integrated data in the RNKB. Specifically, for storage
it employs MySQL and for index, it employs the inverted file
indexing method [3].

4. Modeling: it utilizes a generative probabilistic model to si-
multaneously model different types of information. It esti-
mates a topic distribution for each type of information.

5. Search Services: based on the modeling results, it provides
several search services: expertise search and association search.
It also provides other services, e.g., author interest finding
and academic suggestion (such as paper suggestion and cita-
tion suggestion).

It is challenging in many ways to implement these components.
First, the previous extraction work has been usually conducted on a
specific data set. It is not immediately clear whether such methods
can be directly adapted to the global Web. Secondly, it is unclear
how to deal with the disambiguation problem by making full use
of the extracted information. For example, how to use the rela-
tionships between publications. Thirdly, there is no existing model
that can simultaneously model the different types of information
in the academic network. Finally, different strategies for modeling
the academic network have different behaviors. It is necessary to
study how different they are and which one would be the best for
academic search.

Based on these considerations, for profile extraction, name dis-
ambiguation, and modeling, we propose new approaches to over-
come the drawbacks that exist in the traditional methods. For stor-
age and access, we utilize the classical methods, because these is-
sues have been intensively investigated and the existing methods
can result in good performance in our system.
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Figure 1: Architecture of ArnetMiner.

4. RESEARCHER PROFILE EXTRACTION

4.1 Problem Definition
Profile extraction is the process of extacting the value of each

property in a person profile. We define the schema of the researcher
profile (as shown in Figure 2) by extending the FOAF ontology [9].

We perform a statistical study on randomly selected 1, 000 re-
searchers from ArnetMiner and find that it is non-trivial to perform
profile extraction from the Web. We observed that 85.62% of the
researchers are faculty members from universities and 14.38% are
from company research centers. For researchers from the same
company, they may share a template-based homepage. However,
different companies have different templates. For researchers from
universities, the layout and the content of their homepages vary
largely. We have also found that 71.88% of the 1, 000 Web pages
are researchers’ homepages and the rest are pages introducing the
researchers. Characteristics of the two types of pages significantly
differ from each other.

We also analyze the content of the Web pages and find that about
40% of the profile properties are presented in tables/lists and the
others are presented in natural language text. This suggests a method
without using global context information in the page would be in-
effective. Statistical study also unveils that (strong) dependencies
exist between different profile properties. For example, there are
1, 325 cases (14.54%) in our data of which the extraction needs
to use the extraction results of other properties. An ideal method
should consider processing all the subtasks holistically.

4.2 A Unified Approach to Profiling

4.2.1 Process
The proposed approach consists of three steps: relevant page

identification, preprocessing, and extraction. In relevant page iden-
tification, given a researcher name, we first get a list of web pages
by a search engine (we use the Google API) and then identify the
homepage/introducing page using a binary classifier. We use Sup-
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Figure 2: The schema of researcher profile.

port Vector Machines (SVM) [12] as the classification model and
define features such as whether the title of the page contains the
person name and whether the URL address (partly) contains the
person name. The performance of the classifier is 92.39% by F1-
measure. In preprocessing, (a) we separate the text into tokens and
(b) we assign possible tags to each token. The tokens form the ba-
sic units and the pages form the sequences of units in the tagging
problem. In tagging, given a sequence of units, we determine the
most likely corresponding sequence of tags by using a trained tag-
ging model. Each tag corresponds to a property defined in Figure
2, e.g., ‘Position’. In this paper, we make use of Conditional Ran-
dom Fields (CRFs) [20] as the tagging model. Next we describe
the steps (a) and (b) in detail.

(a) We identify tokens in the Web page using heuristics. We
define five types of tokens: ‘standard word’, ‘special word’, ‘<im-
age>’ token, term, and punctuation mark. Standard words are un-
igram words in natural language. Special words include email,
URL, date, number, percentage, words containing special terms
(e.g. ‘Ph.D.’ and ‘.NET’), special symbols (e.g. ‘===’ and ‘###’).
We identify special words by using regular expressions. ‘<image>’
tokens (used for identifying person photos and email addresses) are
‘<image>’ tags in the HTML file. Terms are base noun phrases ex-
tracted from the Web page by using a tool based on technologies
proposed in [30].

(b) We assign tags to each token based on the token type. For ex-
ample, for a standard word, we assign all possible tags correspond-
ing to all properties. For a special word, we assign tags indicating
Position, Affiliation, Email, Address, Phone, Fax, Bsdate, Msdate,
and Phddate. For a ‘<image>’ token, we assign two tags: Photo and
Email, because an email address is sometimes shown as an image).

After each token is assigned with several possible tags, we can
perform most of the profiling tasks using the tags (extracting 19
properties defined in Figure 2).

4.2.2 CRF model and Features
We employ Conditional Random Fields (CRF) as the tagging

model. CRF is a conditional probability of a sequence of tags given
a sequence of observations [20]. For tagging, a trained CRF model
is used to find the sequence of tags Y ∗ having the highest like-
lihood Y ∗ = maxY P (Y |X). The CRF model is built with the
labeled data by means of an iterative algorithm based on Maximum
Likelihood Estimation.

Three types of features were defined in the CRF model: con-
tent features, pattern features, and term features. The features were
defined for different kinds of tokens. Table 1 shows the defined fea-
tures. We incorporate the defined features into the CRF model by
defining Boolean-valued feature functions. Finally, 108,409 fea-
tures were used in our experiments.

4.3 Profile Extraction Performance
For evaluating our profiling method, we randomly chose 1, 000

researcher names in total from our researcher network. We used the



Table 1: Content features, Pattern features, and term features.

Content Feature Pattern Feature
Standard
Token

Word Word in the token All Token
Morphology Morphology of the word Positive word If the token contains a pre-defined positive word

Image
Token

Size The size of the image Negative word If the token contains a pre-defined negative word
Height/width ratio the ratio of height/width of the image Special token If the token contains a special pattern
Image format The format of the image (e.g., ‘JPG’) Name If the token contains the researcher name

Image color The number of unique colors #Line break How many line breaks before the current line
The number of bits per pixel Term Feature

Filename Words in the filename Term Token
Face detection If the image contains a person face recog-

nized by (opencvlibrary.sf.net)
Term If the token contains a base noun phrase

ALT Words in ‘alt’ attribute of the image Dictionary If the token contains a word in a dictionary

68 70 72 74 76 78 80 82 84

content

content + term

content + pattern

All

Figure 3: Contribution of features (%).

method described in Section 4.2.1 to find the researchers’ home-
pages or introducing pages. If the method cannot find a Web page
for a researcher, we removed the researcher name from the data
set. We finally obtained 898 Web pages (one for each researcher).
Seven human annotators conducted annotation on the Web pages.
A spec was created to guide the annotation process. On disagree-
ments in the annotation, we conducted ‘majority voting’. In the
experiments, we conducted evaluations in terms of precision, re-
call, and F1-measure for each profile property.

We defined baselines for profile extraction. We used the rule
learning and the classification based approaches as baselines. For
the former, we employed the Amilcare tool, which is based on a
rule induction algorithm: LP 2 [11]. For the latter, we trained a
classifier to identify the value of each property. We employed Sup-
port Vector Machines (SVM) [12] as the classification model.

Experimental results show that our method results in a perfor-
mance of 83.37% in terms of average F1-measure; while Amilcare
and SVM result in 53.44% and 73.57%, respectively. Our method
clearly outperforms the two baseline methods. We have also found
that the performance of the unified method decreases (−11.28% by
F1) when removing the transition features, which indicates that a
unified approach is necessary for researcher profiling.

We investigated the contribution of each feature type in profile
extraction. We employed only content features, content+term fea-
tures, content+pattern features, and all features to train the models
and conducted the profile extraction. Figure 3 shows the average
F1-scores of profile extraction with different feature types. The
results unveil contributions of individual features in the extraction.
We see that solely using one type of features cannot obtain accurate
profiling results. Detailed evaluations can be found in [28].

5. NAME DISAMBIGUATION

5.1 Problem Definition
We integrate the publication data from the online database in-

cluding DBLP bibliography, ACM Digital library, CiteSeer, and
others. For integrating the researcher profiles and the publications,
we use the researcher name and the publication author name as the
identifier. The method inevitably has the ambiguity problem.

We give a formal definition of the name disambiguation task in
our context. Given a person name a, we denote all publications
having the author name a as P = {p1, p2, · · · , pn}. Each publi-
cation pi has six attributes: paper title (pi.title), publication venue

Table 2: Relationships between papers.
R W Relation Name Description
r1 w1 CoPubvenue pi.pubvenue = pj .pubvenue

r2 w2 CoAuthor ∃r, s > 0, a
(r)
i = a

(s)
j

r3 w3 Citation pi cites pj or pj cites pi

r4 w4 Constraints Feedbacks supplied by users
r5 w5 τ -CoAuthor τ -extension co-authorship (τ > 1)

(pi.pubvenue), published year (pi.year), abstract (pi.abstract),
authors ({a(0)

i , a
(1)
i , · · · , a

(u)
i }), and references (pi.references).

For the authors of a paper {a(0)
i , a

(1)
i , · · · , a

(u)
i }, we call the

author name we are going to disambiguate as the principal author
(denoted as a

(0)
i ) and the others secondary authors. Suppose there

are k actual researchers having the name a, our task is then to assign
papers with the author a to their actual researcher yh, h ∈ [1, k].

We define five types of relationships between papers (Table 2).
Relationship r1 represents two papers are published at the same
venue. Relationship r2 means two papers have a secondary author
with the same name, and relationship r3 means one paper cites the
other paper. Relationship r4 indicates a constraint-based relation-
ship supplied via user feedback. For instance, the user can specify
that two specific papers should be assigned to a same person. We
use an example to explain relationship r5. Suppose pi has authors
‘David Mitchell’ and ‘Andrew Mark’, and pj has authors ‘David
Mitchell’ and ‘Fernando Mulford’. We are to disambiguate ‘David
Mitchell’. If ‘Andrew Mark’ and ‘Fernando Mulford’ also coauthor
a paper, then we say pi and pj have a 2-CoAuthor relationship. In
our currently experiments, we empirically set the weights of rela-
tionships w1 ∼ w5 as 0.2, 0.7, 0.3, 1.0, 0.7τ .

The publication data with relationships can be modeled as a graph
comprising of nodes and edges. Each attribute of a paper is attached
to the corresponding node as a feature vector. In the vector, we use
words (after stop words filtering and stemming) in the attributes as
features and use their numbers of occurrences as the values.

5.2 A Unified Probabilistic Framework

5.2.1 Formalization using HMRF
We propose a probabilistic framework based on Hidden Markov

Random Fields (HMRF) [5], which can capture dependencies be-
tween observations (with each paper being viewed as an observa-
tion). The disambiguation problem is cast as assigning a tag to each
paper with each tag representing an actual researcher.

Specifically, we define a-posteriori probability as the objective
function. We aims at maximizing the objective function. The five
types of relationships are incorporated into the objective function.
According to HMRF, the conditional distribution of the researcher
labels y given the observations x (papers) is

P (y|x) =
1

Z
exp(−

∑

i,h

D(xi, yh)−
∑

i,j 6=i

(D(xi, xj)
∑
rk

wkrk(xi, xj)))



Table 3: Data set for name disambiguation.
Person Name # Publi-

cations
#Actual
Persons

Person Name # Publi-
cations

#Actual
Persons

Cheng Chang 12 3 Gang Wu 40 16
Wen Gao 286 4 Jing Zhang 54 25

Yi Li 42 21 Kuo Zhang 6 2
Jie Tang 21 2 Hui Fang 15 3
Bin Yu 66 12 Lei Wang 109 40

Rakesh Kumar 61 5 Michael Wagner 44 12
Bing Liu 130 11 Jim Smith 33 5

where D(xi, yh) is the distance between paper xi and researcher
yh and D(xi, xj) is the distance between papers xi and xj ; rk(xi, xj)
denotes a relationship between xi and xj ; wk is the weight of the
relationship; and Z is a normalization factor.

5.2.2 EM framework
Three tasks are executed by the Expectation Maximization method:

estimation of parameters in the distance measure, re-assignment of
papers to researchers, and update of researcher representatives yh.

We define the distance function D(xi, xj) as follows:

D(xi, xj) = 1− xT
i Axj

‖xi‖A‖xj‖A
, where ‖xi‖A =

√
xT

i Axj (1)

here A is defined as a diagonal matrix, for simplicity. Each element
in A denotes the weight of the corresponding feature in x.

The EM process can be summarized as follows: in the E-step,
given the researcher representatives, each paper is assigned to a
researcher by maximizing P (y|x). In the M-step, the researcher
representative yh is re-estimated from the assignments, and the dis-
tance measure is updated to maximize the objective function again.

In the E-step, assignments of data points to researchers are up-
dated to maximize P (y|x). A greedy algorithm is used to sequen-
tially assign each paper xi to its new assignment yh (h ∈ [1, k])
that minimizes the function (equivalently to maximize P (yh|xi)):

f(yh, xi) = D(xi, yh) +
∑

j 6=i

(D(xi, xj)
∑
rk

wkrk(xi, xj)) (2)

The assignment of a paper is performed while keeping assign-
ments of the other papers fixed. The assignment process is re-
peated after all papers are assigned. This process runs until no
paper changes its assignment between two successive iterations.

In the M-step, each researcher representative is updated by the

arithmetic mean of its points: yh =
∑

i:yi=h xi

‖∑
i:yi=h xi‖A

.

Then, each parameter amm in A is updated by (only parameters
on the diagonal): amm = amm + η

∑
i

∂f(yh,xi)
∂amm

, where:

∂f(yh, xi)

∂amm
=

∂D(xi, yh)

∂amm
+

∑

j 6=i

(
∂D(xi, xj)

∂amm

∑
rk

wkrk(xi, xj)) (3)

∂D(xi, xj)

∂amm
=

ximxjm‖xi‖A‖xj‖A − xT
i Axj

x2
im‖xi‖2A+x2

jm‖xj‖2A
2‖xi‖A‖xj‖A

‖xi‖2A‖xj‖2A
(4)

5.3 Name Disambiguation Performance
To evaluate our method, we created a data set that consists of

14 real person names (six are from the author’s lab and the others
are from [31]). Statistics of this data set are shown in Table 3. Five
human annotators conducted disambiguation for the names. A spec
was created to guide the annotation process. The labeling work was
carried out based on authors’ affiliations, emails, and publications
on their homepages.

We defined a baseline based on the method from [27] except that
[27] also utilizes a search engine to help the disambiguation. The
method is based on hierarchical clustering. We also compared our

Table 4: Results on name disambiguation (%).

Person Name Baseline Our Approach
Prec. Rec. F1 Prec. Rec. F1

Cheng Chang 100.0 100.0 100.0 100.0 100.0 100.0
Wen Gao 96.60 62.64 76.00 99.29 98.59 98.94

Yi Li 86.64 95.12 90.68 70.91 97.50 82.11
Jie Tang 100.0 100.0 100.0 100.0 100.0 100.0
Gang Wu 97.54 97.54 97.54 71.86 98.36 83.05

Jing Zhang 85.00 69.86 76.69 83.91 100.0 91.25
Kuo Zhang 100.0 100.0 100.0 100.0 100.0 100.0
Hui Fang 100.0 100.0 100.0 100.0 100.0 100.0
Bin Yu 67.22 50.25 57.51 86.53 53.00 65.74

Lei Wang 68.45 41.12 51.38 88.64 89.06 88.85
Rakesh Kumar 63.36 92.41 75.18 99.14 96.91 98.01

Michael Wagner 18.35 60.26 28.13 85.19 76.16 80.42
Bing Liu 84.88 43.16 57.22 88.25 86.49 87.36

Jim Smith 92.43 86.80 89.53 95.81 93.56 94.67
Average 82.89 78.51 80.64 90.68 92.12 91.39
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Figure 4: Comparison with an existing method.

approach with the DISTINCT method [31]. In all experiments, we
suppose that the number of persons k is provided empirically.

Table 4 shows the results. We see that our method significantly
outperforms the baseline method for name disambiguation (+10.75%
in terms of the average F1-score). The baseline method suffers
from two disadvantages: 1) it cannot take advantage of relation-
ships between papers and 2) it relies on a fixed distance measure.

Figure 4 shows the comparison results of our method and DIS-
TINCT [31]. We used the person names evaluated in both [31]
and our experiments for comparison. We see that for some names,
our approach significantly outperforms DISTINCT (e.g., ‘Michael
Wagner’); while for other names our approach underperforms DIS-
TINCT (e.g. ‘Bin Yu’).

We further investigated the contribution of each relationship type.
We first removed all relationships and then added them to our ap-
proach one by one: CoPubvenue, Citation, CoAuthor, and τ -CoAuthor.
At each step, we evaluated the performance of our approach (cf.
Figure 5). We see that without using the relationships the dis-
ambiguation performance drops sharply (−44.72% by F1) and by
adding the relationships, improvements can be obtained at each
step. This confirms us that a framework by integrating relationships
for name disambiguation is worthwhile and each defined relation-
ship in our method is helpful. We can also see that the CoAuthor
relationship is the major contributor (+24.38% by F1).

6. MODELING ACADEMIC NETWORK
Modeling the academic network is critical to any searching or

suggesting tasks. Traditionally, information is usually represented
based on the ‘bag of words’ (BOW) assumption. The method tends
to be overly specific in terms of matching words.
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Figure 5: Contribution of relationships.



Recently, probabilistic topic models such as probabilistic La-
tent Semantic Indexing (pLSI) [17], Latent Dirichlet Allocation
(LDA) [8], and Author-Topic model [25] [26] have been proposed
as well as successfully applied to multiple text mining tasks such as
information retrieval [29], collaborative filtering [8] [16], and paper
reviewer finding [22]. However, these models are not sufficient to
model the whole academic network, as they cannot model topical
aspects of all types of information in the academic network.

We propose a unified topic model for simultaneously modeling
the topical distribution of papers, authors, and conferences. For
simplicity, we use conference to denote conference, journal, and
book hereafter. The learned topic distribution can be used to fur-
ther estimate the inter-dependencies between different types of in-
formation, e.g., the closeness between a conference and an author.

The notations used are summarized as follows. A paper d is a
vector wd of Nd words, in which each wdi is chosen from a vo-
cabulary of size V ; a vector ad of Ad authors, chosen from a set of
authors of size A; and a published conference cd. A collection of D
papers is defined by D = {(w1, a1, c1), · · · , (wD, aD, cD)}. xdi

denotes an author, chosen from ad, responsible for the i-th word
wdi in paper d. The number of topics is denoted as T .

6.1 Our Proposed Topic Models
The proposed model is called Author-Conference-Topic (ACT)

model. Three different strategies are employed to implement the
topic model (as shown in Figure 6).

In the first model (ACT1, Figure 6 (a)), each author is associ-
ated with a multinomial distribution over topics and each word in a
paper and the conference stamp is generated from a sampled topic.

In the second model (ACT2, Figure 6 (b)), each author-conference
pair is associated with a multinomial distribution over topics and
each word is then generated from a sampled topic.

In the third model (ACT3, Figure 6 (c)), each author is associated
with a topic distribution and the conference stamp is generated after
topics have been sampled for all word tokens in a paper.

The different implementations reduces the process of writing a
scientific paper to different series of probabilistic steps. They have
different behaviors in the academic applications. In the remainder
of this section, we will describe the three models in more detail.

6.2 ACT Model 1
In the first model (Figure 6(a)), the conference information is

viewed as a stamp associated with each word in a paper. Intuition
behind the first model is: coauthors of a paper determine topics
written in this paper and each topic then generates the words and
determines a proportion of the publication venue. The generative
process can be summarized as follows:

1. For each topic z, draw φz and ψz respectively from Dirichlet
priors βz and µz;

2. For each word wdi in paper d:

• draw an author xdi from ad uniformly;
• draw a topic zdi from a multinomial distribution θxdi

specific to author xdi, where θ is generated from a Dirich-
let prior α;

• draw a word wdi from multinomial φzdi ;
• draw a conference stamp cdi from multinomial ψzdi .

Following [26], we choose Gibbs sampling for inference. As for
the hyperparameters α, β, and µ, for simplicity, we take a fixed
value (i.e., α = 50/T , β = 0.01, and µ = 0.1). In the Gibbs
sampling procedure, we first estimate the posterior distribution on
just x and z and then use the results to infer θ, φ, and ψ. The

posterior probability is calculated by the following:

P (zdi, xdi|z−di, x−di, w, c, α, β, µ) ∝
m−di

xdizdi
+ αzdi∑

z(m−di
xdiz + αz)

n−di
zdiwdi

+ βwdi∑
wv

(n−di
zdiwv + βwv )

n−d
zdicd

+ µcd∑
c(n

−d
zdic + µc)

(5)

where the superscript−di denotes a quantity, excluding the current
instance (e.g., the di-th word token in the d-th paper).

After Gibbs sampling, the probability of a word given a topic φ,
the probability of a conference given a topic ψ, and the probability
of a topic given an author θ can be estimated as follows:

φzwdi =
nzwdi + βwdi∑
wv

(nzwv + βwv )
(6)

ψzcd =
nzcd + µcd∑
c(nzc + µc)

(7)

θxz =
mxz + αz∑

z′ (mxz′ + αz′ )
(8)

6.3 ACT Model 2
In the second model (cf. Figure 6(b)), each topic is chosen from a

multinomial topic distribution specific to an author-conference pair,
instead of an author as that in ACT1. The model is derived from the
observation: when writing a paper, coauthors usually first choose a
publication venue and then write the paper based on themes of the
publication venue and interests of the authors. The corresponding
generative process is:

1. For each topic z, draw φz from Dirichlet priors βz;
2. For each word wdi in ppaer d:

• draw an author-conference pair (xdi, cd) from {ad, cd}
uniformly;

• draw a topic zdi from a multinomial distribution θ(xdicd)

specific to author-conference pair (xdi, cd), where θ is
generated from a Dirichlet prior α;

• draw a word wdi from multinomial φzdi .

Similarly, we can calculate the posterior conditional probability
using a Gibbs sampling procedure analogous to that in ACT1.

P (zdi, (xc)di|z−di, x−di, c−d, w, α, β) ∝
m−di

(xc)dizdi
+ αzdi∑

z(m−di
(xc)diz

+ αz)

n−di
zdiwdi

+ βwdi∑
wv

(n−di
zdiwv + βwv )

(9)

6.4 ACT Model 3
In the third model (cf. Figure 6(c)), the conference stamp is

taken as a numerical value. Each conference stamp of a paper is
chosen after topics have been sampled for all word tokens in the
paper. Intuitively, this corresponds to a natural way of publishing
the scientific paper: authors first write a paper and then determine
where to publish the paper based on the topics discussed in the
paper. The corresponding generative process is:

1. For each topic z, draw φz from Dirichlet priors βz;
2. For each word wdi in paper d:

• draw an author xdi from ad uniformly;
• draw a topic zdi from a multinomial distribution θxdi

specific to author xdi;• draw a word wdi from multinomial φzdi .

3. Draw a conference cd from z1:Nd using a normal linear model
N(η>τ, σ2), where τ is a vector recording the normalized
number of times of each topic sampled from paper d. We
define it as τ [k] = (1/Nd)

∑Nd
i=1 I[zdi = k], where I is an

indicator function with I[true] = 1 and I[false] = 0.
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Figure 6: Graphical representation of the three Author-Conference-Topic (ACT) models.

In this model, the conference comes from a normal linear model.
The covariates τ in this model are the frequencies of the topics
in the document. The regression coefficients on these frequencies
constitute η. The difference of parameterization from ACT1 is that
the conference stamp is sampled from a normal linear distribution
after topics were sampled for all word tokens in a paper.

For inference in ACT3, there is a slight difference from that in
ACT1 and ACT2, as we also need to estimate the parameters η and
σ2. We use a Gibbs EM algorithm [2] for inference of this model.

In the E-step, for sampling the topic, the posterior probability is
calculated by

P (zdi, xdi|z−di, x−di, cd, w, α, β, η, σ2) ∝

P (cd|z1:Nd
, η, σ2)

m−di
xdizdi

+ αzdi∑
z(m−di

xdiz + αz)

n−di
zdiwdi

+ βwdi∑
wv

(n−di
zdiwv + βwv )

(10)

where

P (cd|z1:Nd
, η, σ2) =

1√
2πσ2

e
(− (cd−η>τ)2

2σ2 ) (11)

In the M-step, given the sampled topics z, the optimal η and σ2

can be estimated by maximizing argmxη,σ log P (x, z, w, c|α, β, η, σ2).
Specifically, η is updated by

ηnew ← (E[A>A])−1E[A]>c (12)

and σ2 is updated by

σ2
new ← (1/D){c>c− c>E[A](E[A>A])−1E[A]>c} (13)

where E[.] is the expectation of the variables; A is a D×T matrix.
The d-th row of the matrix is E[τ ] = φ̄ := (1/Nd)

∑Nd
i=1 φdi and

E[A>A] =
∑D

d=1 E[τdτ>d ] is a T × T matrix, where E[τdτ>d ] is
defined as:

E[τdτ>d ] = (1/N2
d )(

Nd∑

i=1

∑

j 6=i

φdiφ
>
dj +

Nd∑

i=1

diag{φdi}) (14)

with diag{φdi} denoting a matrix with diagonal as the vector of
φdi. Note that φdi denotes a vector of probabilities of topics gen-
erating word wdi. We omit details of derivation of Equations (12)
and (13). Interested reader is referred to [7] and [23].

7. ACADEMIC SEARCH SERVICES

7.1 Applying ACT Models to Expertise Search
In expertise search, the objective is to find the expertise authors,

expertise papers, and expertise conferences for a given query.

7.1.1 Process
Based on the proposed models, we can calculate the likelihood of

a paper generating a word using ACT1 as the example as following:

PACT1(w|d, θ, φ) =
T∑

z=1

Ad∑

x=1

P (w|z, φz)P (z|x, θx)P (x|d) (15)

The likelihood of an author model and a conference model gen-
erating a word can be similarly defined. However, the learned top-
ics by the LDA-style model is usually general and not specific to a
given query. Therefore, only using ACT itself is too coarse for aca-
demic search [29]. Our preliminary experiments also show that em-
ploying only ACT or LDA models to information retrieval hurts the
retrieval performance. In general, we would like to have a balance
between generality and specificity. Therefore, we derive a combi-
nation of the ACT model and the word-based language model:

P (w|d) = PLM (w|d)× PACT (w|d) (16)

where PLM (w|d) is the generating probability of word w from pa-
per d by the language model. It is defined as:

P (w|d) =
Nd

Nd + λ
· tf(w, d)

Nd
+ (1− Nd

Nd + λ
) · tf(w, D)

ND
(17)

where tf(w, d) is the frequency of word w in d, tf(w, D) is the
frequency of word w in the collection D, and ND is the number
of word tokens in the collection D. λ is the Dirichlet prior and is
commonly set based on the average paper length in the collection.

Finally, given a query q, P (q|d) can be computed by P (q|d) =
Πw∈qP (w|d). Similarly, we can define P (q|a) for authors and
P (q|c) for conferences.

7.1.2 Expertise Search Performance
We collected a list of the most frequent queries from the log

of ArnetMiner for evaluation. We conducted experiments on a
subset of the data (including 14, 134 persons, 10, 716 papers, and
1, 434 conferences) from ArnetMiner. For evaluation, we used the
method of pooled relevance judgments [10] together with human
judgments. Specifically, for each query, we first pooled the top 30
results from three similar systems (Libra, Rexa, and ArnetMiner).
Then, two faculty members and five graduate students from CS
provided human judgments. Four-grade scores (3, 2, 1, and 0)
were assigned respectively representing definite expertise, exper-
tise, marginal expertise, and no expertise. Finally, the judgment
scores were averaged to obtain the final score.

In all experiments, we conducted evaluation in terms of P@5,
P@10, P@20, R-pre, and mean average precision (MAP) [10] [13].

We used language model (LM), LDA [8], and the Author-Topic
(AT) model [25] [26] as the baseline methods. For language model,
we used Equation (17) to calculate the relevance between a query
term and a document and similar equations for an author/conference
(an author is represented by his/her published papers and a confer-
ence is represented by papers published on it). For LDA, we used
a similar equation to Equation (16) to calculate the relevance of a
term and a document. For the AT model, we used similar equations
to Equation (16) to calculate the relevance of a query term with a
paper or an author. For the LDA and AT models, we performed
model estimation with the same setting as that for the ACT models.
We empirically set the number of topics as T = 80 for all models.



Topic #5 (Model 1) Topic #10 (Model 1) Topic #16 (Model 1) Topic #19 (Model 1) Topic #24 (Model 1)
“Natural language processing” “Semantic web” “Machine learning” “Support vector machines” “Information extraction”

language 0.034820
parsing 0.023766
natural 0.019029
learning 0.015871
approach 0.012712
grammars 0.012712
processing 0.011923
text 0.011923

semantic 0.068226
web 0.048847
ontology 0.043160
knowledge 0.041497
learning 0.013431
framework 0.012095
approach 0.011427
based 0.010758

learning 0.058056
classification 0.018517
boosting 0.015881
machine 0.017797
feature 0.013904
classifiers 0.013904
margin 0.013245
selection 0.012586

support 0.082669
vector 0.071373
machine 0.064076
kernel 0.026897
regression 0.020544
neural 0.016308
classification 0.012072
networks 0.011366

learning 0.065259
information 0.043527
extraction 0.033592
web 0.019311
semantic 0.011860
text 0.010618
rules 0.010618
relational 0.009376

Yuji Matsumoto 0.001389
Eugene Charniak 0.001323
Rens Bod 0.001323
Brian Roark 0.001190
Suzanne Stevenson 0.001124
Anoop Sarkar 0.001058

Steffen Staab 0.005863
Enrico Motta 0.004365
York Sure 0.003713
Nenad Stojanovic 0.001824
Alexander Maedche 0.001824
Asuncion Gomez-Perez 0.001694

Robert E. Schapire 0.004033
Yoram Singer 0.003318
Thomas G. Dietterich 0.002472
Bernhard Scholkopf 0.001496
Alexander J. Smola 0.001301
Ralf Schoknecht 0.001236

Bernhard Scholkopf 0.003929
Johan A. K. Suykens 0.003536
Vladimir Vapnik 0.002947
Olvi L. Mangasarian 0.002947
Joos Vandewalle 0.002030
Nicola L. C. Talbot 0.001768

Raymond J. Mooney 0.010346
Andrew McCallum 0.004074
Craig A. Knoblock 0.003492
Nicholas Kushmerick 0.002457
Ellen Riloff 0.002199
William W. Cohen 0.002134

ACL 0.253487
COLING 0.234435
CL 0.118136
ANLP 0.060423
CoRR 0.058674
COLING-ACL 0.036814

ISWC 0.125291
EKAW 0.122379
IEEE Intelligent Systems 0.071418
CoopIS/DOA/ODBASE 0.065594
K-CAP 0.054674
ESWS 0.023369

NIPS 0.289761
JMLR 0.206583
ICML 0.156389
COLT 0.096157
Neural Computation 0.023017
MLSS 0.011545

Neural Computation 0.096707
NIPS 0.094388
ICANN 0.084338
JMLR 0.083565
Neurocomputing 0.071197
Machine Learning 0.067331

AAAI 0.295846
IJCAI 0.192995
ICML 0.060567
KDD 0.058551
JAIR 0.046451
ECML 0.033006

Table 5: Five topics discovered by ACT1 on the Arnetminer data. Each topic is shown with the top 8 words and their corresponding
probabilities. Top 6 authors and top 6 conferences are shown with each topic. The titles are our interpretation of the topics.

Table 6: Performance of six expertise search approaches (%).
Method Object P@5 P@10 P@20 R-pre MAP

LM

Paper 40.0 38.6 37.1 10.0 46.4
Author 65.7 44.3 25.0 58.8 73.4

Conference 51.4 32.9 21.4 47.6 63.1
Average 52.4 38.6 27.9 38.8 61.0

LDA Paper 31.4 48.6 42.9 13.5 45.8

AT
Paper 42.9 48.6 42.9 13.1 49.3

Author 82.9 45.7 25.7 73.5 78.1
Average 62.9 47.1 34.3 43.3 63.7

ACT1

Paper 42.9 45.7 43.6 16.6 51.0
Author 91.4 50.0 26.4 80.0 89.6

Conference 62.9 41.4 23.6 60.7 72.3
Average 65.7 45.7 31.2 52.4 71.0

ACT2

Paper 42.9 47.1 39.3 15.0 47.7
Author 74.3 50.0 25.7 69.4 80.1

Conference 54.3 41.4 22.1 54.2 63.9
Average 57.1 46.2 29.1 46.2 63.9

ACT3

Paper 42.9 38.6 41.4 17.1 47.0
Author 71.4 47.1 25.7 70.0 78.7

Conference 57.1 38.6 23.6 58.3 65.7
Average 57.1 41.4 30.2 48.5 63.8

Table 5 shows five topics discovered by ACT1.
Table 6 shows the experimental results of retrieving papers, au-

thors, and conferences using our proposed methods and the base-
line methods. We see that our proposed three methods outperform
the baseline methods. LDA only models documents and thus can
support only paper search; while AT supports paper search and au-
thor search. Both models underperform our proposed unified mod-
els. Our models benefit from the ability of modeling all kinds of in-
formation holistically, thus can capture the dependencies between
the different types of information. We can also see that ACT1
achieves the best performance in all evaluation measures.

For comparison purposes, we also evaluate the results of two
similar systems: Libra.msra.cn and Rexa.info. The average MAP
obtained by Libra and Rexa on our data set are 48.3% and 45.0%.
We see that our methods clearly outperform the two systems.

7.2 Applying ACT Models to Association Search
Association Search: Given a social network G = (V, E) and an as-
sociation query (ai, aj) (source person, target person), association
search is to find and rank possible associations {αk(ai, aj)} from
ai to aj . Each association is denoted as a referral chain of persons.

There are two subtasks in association search: finding possible as-

sociations between two persons and ranking the associations. Given
a large social network, to find all associations is an NP-hard prob-
lem. We instead focus on finding the ‘shortest’ associations. Hence,
the problem becomes how to estimate the score of an association
and one key issue is how to calculate the distance between persons.
We use KL divergence to define the distance as:

KL(ai, aj) =
T∑

z=1

θaizlog
θaiz

θajz
(18)

We use the accumulated distance between persons on an associ-
ation path as the score of the association. We call the association
with the smallest score as the shortest association and our problem
can be formalized as that of finding the near-shortest associations.
Our approach consists of two stages:

1) Shortest association finding. It aims at finding shortest asso-
ciations from all persons a ∈ V \aj in the network to the target
person aj (the score of the shortest association from ai to aj is de-
noted as Lmin > 0). We use a heap based Dijkstra algorithm to
find the shortest associations.

2) Near-shortest associations finding. Based on the shortest asso-
ciation score Lmin and a parameter γ, the algorithm uses a depth-
first search to find associations whose scores are less than (1 +
γ)Lmin. We constrain the length of an association to be less than a
pre-defined threshold. Finally, the obtained associations are ranked
according to the scores.

Our approach can find the near-shortest associations for a query
in less than 3 seconds on a commodity machine with a network of
researchers. In the following, we list two associations ranked by
our approach for the query (‘Hang Li’, ‘Qiang Yang’).

1. Hang Li -> Yong Yu -> Qiang Yang (score: 0.127)
2. Hang Li -> Bin Gao -> Wei-Ying Ma -> Qiang Yang (score: 0.274)

7.3 Other Applications
Our model can support many other applications, e.g., author in-

terest finding and academic suggestion.
For example, Table 7 shows top 5 words and top 5 authors as-

sociated to two conferences found by ACT1. Table 8 shows top 5
words and top 5 conferences associated to two researchers found
by ACT1. The results can be directly used to characterize the con-
ference themes and researcher interests. They can be also used for
prediction/suggestion tasks. For example, one can use the model
to find the best matching reviewer for a paper submitted to a spe-
cific conference. Previously, such work is fulfilled by only keyword
matching or topic-based retrieval such as [22], but not considering



Table 7: Top 5 representative words and top 5 authors associ-
ated to two conferences found by ACT1.

ACL SIGIR
parsing 0.030523
semantic 0.018398
learning 0.016851
statistical 0.014143
information 0.013620

information 0.036946
text 0.030265
classification 0.027953
retrieval 0.025588
web 0.021703

Christopher D. Manning 0.003984
Dan I. Moldovan 0.003358
Mark Johnson 0.002837
Robert C. Moore 0.002055
Jason Eisner 0.001933

Susan T. Dumais 0.002432
W. Bruce Croft 0.002190
Norbert Fuhr 0.001643
Fabrizio Sebastiani 0.001279
Laura A. Granka 0.001279

Table 8: Top 5 representative words and top 5 conferences
associated to two researchers found by ACT1.

Raymond Mooney Bruce Croft
learning 0.053442
information 0.029767
extraction 0.022361
web 0.014841
semantic 0.009696

information 0.020554
web 0.017087
learning 0.016322
text 0.014615
classification 0.014315

AAAI 0.190748
IJCAI 0.126281
Machine Learning 0.053669
ICML 0.049556
KDD 0.038491

SIGIR 0.104724
CIKM 0.099845
Inf. Process. Manage. 0.024329
AAAI 0.023232
ECIR 0.022895

the conference. One can also use the model to suggest a venue to
submit a paper based on its content and authors’ interests. Or one
can use it to suggest popular topics when authors prepare a paper
for a conference.

8. CONCLUSION
In this paper, we describe the architecture and the main fea-

tures of the ArnetMiner system. Specifically, we propose a uni-
fied tagging approach to researcher profiling. About a half million
researcher profiles have been extracted into the system. The sys-
tem has also integrated more than one million papers. We propose
a probabilistic framework to deal with the name ambiguity prob-
lem in the integration. We further propose a unified topic model
to simultaneously model the different types of information in the
academic network. The modeling results have been applied to ex-
pertise search and association search. We conduct experiments for
evaluating each of the proposed approaches. Experimental results
indicate that the proposed methods can achieve a high performance.

There are many potential future directions of this work. It would
be interesting to further investigate new extraction models for im-
proving the accuracy of profile extraction. It would be also interest-
ing to investigate how to determine the actual person number k for
name disambiguation. Currently, the number is supplied manually,
which is not practical for all author names. In addition, extending
the topic model with link information (e.g., citation information) or
time information is a promising direction.
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