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Statistical topic models have been proposed for modeling documents and authorship
information. However, few previous works have studied the evolution of associated data. In
this paper, we investigate how to model trends of changes in document content and author
interests simultaneously over time. We propose two models: a bag-of-words based Author–
Time–Topic model that extends the state-of-the-art LDA-style topic model and a Hidden
Markov Author–Time–Topic model, which can model interdependencies between topics. We
use the Gibbs EM algorithm for parameter estimation. We apply these models to two data sets:
NIPS papers and Yahoo group posts. Experimental results show that our models can achieve a
lower perplexity (−2.0%–20%) than the baseline LDA and Author–Topicmodel, whenmodeling
quickly evolving associated data. Experiments also reveal that the proposed models can
accurately capture the hot topics in different periods (e.g. “Yao at preseason” in Aug-2004,when
the Chinese player Ming Yao became a highlight in the NBA) from the two data sets.

© 2010 Elsevier B.V. All rights reserved.
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1. Introduction

Characterizing different types of information (e.g. document content and authorship) contained in rapidly growing electronic
document collections can benefit many data mining applications. For example, finding topics from document contents is a
standard problem in information retrieval, natural language processing, and machine learning; while modeling the interests of
authors can be utilized to answer a range of important questions, such as which subjects an author is interested in and who are
likely to be the experts on a given subject.

From another point of view, the requirements for modeling trends of changes in associated data (e.g., documents and authors'
interests) are also becoming more and more important. For example, changes of the themes of documents that a researcher is
working on would reflect the shifts of his interest.

A recommendation system can use the evolution analysis results of the associated data to reinforce the recommendation
results. Many large data sets on the currentWeb are dynamic rather than static. Moreover, the change patterns of different types of
information are usually interdependent. Consequently, it becomes a challenge to model the evolution trends of different forms of
information simultaneously in a unified model. This is the problem addressed in this paper.

Many topicmodels have been proposed formodeling document contents and author interests, for example, LDA (a topicmodel)
[5] [15], the Author model [19], and the Author–Topic model [31] [32]. Latent Dirichlet Allocation (LDA) has been proposed to
discovermultinomialword distribution over topics. TheAuthormodel is similar to LDA. The difference is that it is used formodeling
a mixture of word distributions over authors. The Author–Topic model is then proposed to model document contents and authors'
interests. However, all of the aforementioned models ignore important factor–time information, which reveals a huge amount of
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information contained in document collections. Many real-world applications, for example topic detection and tracking (TDT),
research trend analysis on scientific papers, and hot topic finding from newsgroup posts need to consider the evolution of topics
over time.

Recently, several efforts have beenmade at integrating time information into topicmodels. For example, topics over time (TOT)
[40] associates with each topic a Beta distribution that represents the occurrence probability of the topic at a given time. The
Dynamic TopicModels (DTM) [4]model the evolution of topics by estimating the topic distribution at various epochs. However, no
previous work has simultaneously modeled change trends of associated data such as documents and authors' interests.

Several questions arise in modeling associated data: (1) is there a way to model the change trends of different types of data
simultaneously? (2) Is there a betterway tomodel the textual information beyond the unigrammodel? (3) Can information on the
evolution of different data be combined in useful ways? To the best of our knowledge, these problems have not yet been seriously
investigated.

In this paper, we present two generative models, i.e., Author–Time–Topic (ATT) model and Hidden Markov Author–Time–
Topic (HMATT) model, for simultaneously modeling trends of changes in document contents and authors' interests. The ATT
model represents each document by a mixture of topics and assigns a mixture of weights of different topics to the authors of a
document. To model topic distributions, we associate to each topic a continuous distribution over time, so that topics are
responsible for generating both observed words and timestamps. The other model, i.e., Hidden Markov Author–Time–Topic, is
proposed by further considering dependencies between topics. In HMATT, the topics of words in a document are viewed as a
Markov chain and thus the model captures interdependencies between topics. We present experimental results on two real-
world data sets: NIPS papers and Yahoo Group posts. Experimental results show that clear improvements in the trend analysis of
author interests and document characteristics can be obtained by the ATT and HMATT models, compared with the LDA and AT
models.

The contributions of this paper include: (a) the proposal of the ATT model for simultaneously modeling trends of changes in
document contents and author interests, (b) the proposed application of the HMATTmodel to the problem by further considering
dependencies between topics and (c) the empirical verification of the effectiveness of the proposed models.

The rest of the paper is organized as follows. In Section 2, we introduce relatedwork from the literature. In Section 3we present
the proposed ATT and HMATT models. In Section 4, we explain the algorithms for inference and in Section 5, we discuss the
experimental results. Section 6 concludes this work.

2. Related work

Many models have been proposed for modeling documents, for example, language models, probabilistic Latent Semantic
Indexing models (pLSI) [15] and Latent Dirichlet Allocation (LDA) [5]. In this section, we review three aspects of the related work:
topic evolution modeling, author interest modeling, and topic dependency modeling.

2.1. Modeling topic evolution

Several researchers have studied topic evolution in the recent past. The previous models either predivide the data into discrete
time slices or consider continuous time without discretization.

For instance, for time-discretization based modeling, Blei and Lafferty propose Dynamic Topic Models (DTMs) in which the
alignment among topics across time slices is captured by a Kalman filter [4]. However, as themodel uses a normal distribution that
is not a conjugate to the multinomial distribution, the model does not yield a simple solution to the inference. Nallapati et al.
propose a Multiscale Topic Tomography Model (MTTM) [26], which employs inhomogeneous Poisson processes to model the
generation of word-counts. The evolution of topics is modeled through a multiscale analysis using Haar wavelets. Quon et al. [30]
study the problem of evolution of gene expression in inhomogeneous data sets, and present a statistical model to characterize
changes in expression among highly complex organisms.

Another category of models directly modeling the continuous time information. For example, Nodelman et al. propose
Continuous Time Bayesian Networks (CTBN) to model continuous time flow based on the Markov assumption without
discretization [28]. Zhao et al. [41] also propose a method for event detection from evolution of click-through data.

However, all of thesemodels only consider modeling the evolution of one type of information. To the best of our knowledge, no
previous work has simultaneously modeled trends of change in different types of information.

2.2. Modeling author interest with topics

Some other efforts have been made at modeling authors' interests. For example, the Author model (also called the Multilabel
Mixture Model) [19] is intended to model author interests with a one-to-one correspondence between topics and authors. In [31]
[32], an Author–Topic model is presented, which integrates authorship into the topic model and thus can be used to find a topic
distribution over document and a mixture of the distributions associated with authors.

The Author–Topic (AT) model is a Bayesian network similar to that in LDA [5]. In the AT model, each author's interests is
modeled with a mixture of topics [31] [32]. To generate a word of a document, an author is first chosen uniformly at random from
the authors, then a topic is selected from a topic distribution specific to the author, and then a word is generated by sampling from
the chosen topic. McCallum et al. have studied several other topic models in social network analysis [20]. They propose the

966 J. Tang, J. Zhang / Data & Knowledge Engineering 69 (2010) 965–978



Author's personal copy

Author–Recipient–Topic (ART) model, which learns topic distributions based on emails sent between people. The topic
distribution is conditioned on the email contents, senders, and recipients. Leskovec et al. [17] propose a method for tracking new
topics, ideas, and “memes” across the Web.

In recent years, a few works have been conducted for modeling the linked data. For example, Ahmed et al. [1] propose a
structured correspondence topic model for mining figure captions in the biological literature. Nallapati et al. [25] present two
different topic models for joint modeling of text and citations. Liu et al. [18] propose a topic modeling approach to predict the link
relationship between documents. Gruber et al. [14] propose a latent topic model for Hypertext. There are considerable efforts that
have been made to extend the topic model. Doyle and Elkan [9] extend the topic model to discover burstiness; Iwata et al. [16]
propose using a topic modeling approach to model the social annotation data.

However, these models cannot model time information, and thus cannot model trends of changes in information.

2.3. Modeling dependencies between topics

There are also a few other models related to the proposed HMATTmodel. For example,Wallach proposes a Bigram Topic model
[38], which incorporates both n-gram statistics and latent topics by extending a unigram topic model to include properties of a
hierarchical Dirichlet bigram model. Tang et al. [35] present a method to discover topic distribution over links between pages.
Deschacht and Moens [7] present a latent words language model, which dependencies between latent words are taken into
account for semi-supervised semantic role labeling.

In [12], a model that integrates topics and syntax is introduced. It contains a latent variable for each word that stands for
syntactic classes. However, themodel assumes that eachword is generated either from a latent topic or from a syntactic class. Only
the syntactic classes are treated as a sequence with local dependencies while the latent topics are not. Hidden Topic MarkovModel
[13] is based on a strong assumption that all words in the same sentence have the same topic. Putthividhya et al. [29] improve
upon the correlated topic model (CTM) [3] and propose Independent Factor Topic Models (IFTM) which use linear latent variable
models to uncover the hidden sources of correlation between topics. Boyd-Graber and Blei [6] further study a nonparametric
Bayesian model for modeling documents by considering syntactical information available from parsing trees generated by a
natural language parser.

The probabilistic topic models have been widely applied to various applications such as ontology learning [33] [39] and
clustering distributed databases [21]. Several recent studies also consider how to model the imbalanced and noisy data [36] and
how to capture the interactions of subsets of feature values for instance classifications [37].

3. The proposed topic models

Table 1 summarizes the notations used throughout this paper. Given a collection of documentsD={(w1, a1, t1), ⋯, (wD, aD, tD)},
where wd denotes the sequence of Nd words in document d, ad denotes a vector of Ad authors of document d, and td denotes the
timestamp of document d. Each wdi2wd is chosen from a vocabulary of size V and each author adi2ad is chosen from a set of
authors of size A. In addition, let xdi indicate an author, chosen from ad, responsible for the ith word in document d. Here each
author is associated with a distribution over topics θ, chosen from a symmetric Dirichlet(α) prior distribution. The number of
topics is denoted by T.

Modeling the evolution of multiple related objects such as documents' contents and authors' interests is a critical issue inmany
applications. Traditionally, different objects are modeled separately, and documents are usually modeled based on the “bag-of-
words” (BOW) assumption. However, such an approach cannot take advantage the “semantic” dependencies between different
types of objects and cannot capture the relationships between words.

Table 1
Notations.

Symbol Description

T Number of topics
D Number of documents
V Number of unique words
A Number of unique authors
M Number of timestamps
Nd Number of word tokens in document d
wd Vector form of document d
ad Vector form of authors in document d
wdi The ith word token in document d
tdi The timestamp associated with wdi

θd Multinomial distribution over topics
zdi Topic assigned with word token wdi

ϕz Multinomial distribution of words specific to z
ψz Beta distribution of time specific to topic z
xdi The author a associated with wdi
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To deal with this problem, we propose two unified topic models for simultaneously modeling trends of changes in documents'
contents and authors' interests, called Author–Time–Topic (ATT)model and HiddenMarkov Author–Time–Topic (HMATT)model.
The ATT model combines two generative processes to discover the topic-based change patterns of documents and authors. The
HMATT further considers the dependencies within the sequence of words. This is very useful, in particular to model trends of
changes in the associated data. For example, the word “learner” may have two topics: one for machine learning and the other for
human learners. If the previous word is “decision”, “transductive”, or “lazy”, then the word “learner”would has a high probability
to be assigned to be a machine learning topic, whereas if the previous word is “education” or “teach”, then the word is more likely
to be assigned with a human learning topic.

3.1. Author–Time–Topic model

The Author–Time–Topic (ATT) model combines the AT model [31] and the TOT model [40] to estimate topic distributions
simultaneously over words and timestamps. The basic idea of the ATTmodel is that each word token and its associated timestamp
are generated from the same sampled topic, and thus the posterior probability distribution of the sampled topic depends on both
the word and the timestamp. The corresponding generative process in the ATT model can be described as

• For each topic z, draw ϕz from a Dirichlet prior βz;
• For each word wdi in document d
— Draw an author xdi from ad uniformly;
— Draw a topic zdi from a multinomial distribution θxdi specific to author xdi, where θ is generated from a Dirichlet prior α;
— Draw a word wdi from a multinomial distribution ϕzdi ;
— Draw a timestamp tdi from a Beta distribution Beta ψzdi

� �
.

The graphical model of ATT is shown in Fig. 1. All timestamps associated to words in a document are observed as the same as
the timestamp of the document (e.g., the publication year of a paper).

In the ATTmodel, the joint probability of wordsw, timestamps t, a set of corresponding latent topics z, and an author mixture x
is defined as

P x; z;w; t jΘ;Φ;Ψ; að Þ = ∏
D

d=1
∏
Nd

i=1

1
Ad

Beta ψtdi
zdi

� �

× ∏
T

z=1
∏
V

v=1
∏
A

x=1
θmxz
xz ϕnzv

zv

ð1Þ

where mxz is the number of times that topic z has been associated with the chosen author x and nzv is the number of times that
word wv has been generated by topic z. Beta(.) is defined as

Beta ψtdi
z

� �
=

1−tdið Þψzdi1
−1t

ψzdi2
−1

di

B ψzdi1;ψzdi2

� � ð2Þ

where B(.) is a Beta function. We also tried different other distributions for the time information, for example, the same
multinomial distribution as for words, which results in a model similar to the Author–Conference–Topic (ACT) model [34]. We
found that the multinomial and other distributions cannot produce satisfactory results.

Fig. 1. Graphical model in ATT. ad is a vector of authors of a document d; x is an author selected to be responsible for a wordw, t is the timestamp, and z is the topic
assigned to each word. α, β, and ψ are the hyperparameters.
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By placing a Dirichlet prior α over Θ and another prior β overΦ, and combining them into Eq. (1), and then further integrating
over Θ and Φ, we obtain

P x; z;w; t jα;β;Ψ; að Þ = ∏
D

d=1
∏
Nd

i=1

1
Ad

Beta ψtdi
zdi

� �

× ∏
A

x=1

Γ ∑zαzð Þ
∏T

z = 1Γ αzð Þ
∏T

z = 1Γ mxz + αzð Þ
Γ ∑T

z = 1 mxz + αzð Þ� �

× ∏
T

z=1

Γ ∑V
v = 1βv

� �
∏V

v = 1Γ βvð Þ
∏V

v = 1Γ nzv + βvð Þ
Γ ∑V

v = 1 nzv + βvð Þ� � :

ð3Þ

There is a set of unknown parameters in the ATT model: (1) the distribution θ of D document-topics and the distribution ϕ of T
topic-words; (2) the distribution ψ of T×M topic-time and the corresponding topic zdi for each word wdi in the document d. It is
usually intractable to exactly estimate the parameters in such a probabilistic model. A variety of algorithms have been proposed to
estimate them approximately, for example variational EMmethods [5], Gibbs sampling [11] [32], and expectation propagation [11]
[23]. We choose Gibbs sampling for its ease of implementation. Specifically, Gibbs sampling can get around the intractability of
directly estimating the model parameters, as instead it first calculates the posterior distribution on just z and then use the results
to infer θ, ϕ, and ψ.

Given D documents, a set of topics z, and hyperparameters α and β, the random variables ϕ (the probability of a given word
given a topic) and θ (the probability of a given topic given an author) can be estimated via

ϕzwdi
=

nzwdi
+ βwdi

∑V
v = 1 nzv + βvð Þ ð4Þ

θxz =
mxz + αz

∑T
z′ = 1 mxz′ + αz′

� � : ð5Þ

The random variables ψz can be updated after Gibbs sampling by fixing the sampled topics for the words [40]

ψz1 = tyz
tyz 1−tyz
� �
s2z

−1

 !
ð6Þ

ψz2 = 1−tyz
� � tyz 1−tyz

� �
s2z

−1

 !
ð7Þ

where tz
y and sz

2 respectively denote the sample mean and the biased sample variance of the timestamps to topic z.

3.2. Hidden Markov Author–Time–Topic model

The HMATTmodel further extends the ATTmodel by considering the dependencies between topics. Traditional LDA-style topic
models are usually based on the bag-of-words assumption, and thus ignore dependencies between topics. These models make
sense from the perspective of computational efficiency, but are unrealistic. In many language modeling applications, such as
named entity recognition and part-of-speech (POS) tagging, dependencies (even strong dependencies) exist between topics. We
also found this problem in our setting. This leads us to think about how to incorporate dependencies between topics into the ATT
model.

There are several ways of describing the dependencies. We propose a Hidden Markov Author–Time–Topic (HMATT) model,
which defines a conditional distribution P(zk|zjxk), described by (AT×T) free parameters. Their parameters form an AT rowsmatrix
Θ, with P(zk|zjxk)=θ(zk|zjxk) Each row is a distribution over topics for a particular context zj and xk denoted by Θzjxk.

Based on this consideration, the generative process for a corpus can be defined as

• For each topic z, draw ϕz from a Dirichlet prior βz;
• For each word wdi in document d
— Draw an author xdi from ad uniformly;
— Draw a topic zdi from a multinomial θxdizd i−1ð Þ that is defined by the author xdi and previously sampled topic zd(i−1), where θ is

generated from a Dirichlet prior α;
— Draw a word wdi from a multinomial distribution ϕzdi ;
— Draw a timestamp tdi from a Beta distribution Beta ψzdi

� �
.
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A graphical model of HMATT is shown in Fig. 2. We see that in HMATT, topic generation is determined not only by the chosen
author but also by the previous topic. Hence, the joint probability of words w, topics z, timestamps t, and authors x is

P x; z;w; t jΘ;Φ;Ψ; að Þ = ∏
D

d=1
∏
Nd

i=1

1
Ad

Beta ψtdi
zdi

� �
× ∏

T

zj =1
∏
T

zk =1
∏
V

v=1
∏
A

x=1
θ
mzk j zj x
zk j zjxkϕ

nzkv
zkv ð8Þ

where zj is the sampled topic for the previous word wj and zk is the sampled topic for the current word wk.
By integrating out the variables Θ and Φ, we have

P x; z;w; t jα;β;Ψ; að Þ = ∏
D

d=1
∏
Nd

i=1

1
Ad

Beta ψtdi
zdi

� �

× ∏
A

x=1
∏
T

zj =1

Γ ∑T
zk = 1αzk

� �
∏T

zk = 1Γ αzk

� � ∏T
zk = 1Γ mzk j zjx + αzk

� �
Γ ∑T

zk = 1 mzk j zjx + αzk

� �� �

× ∏
T

z=1

Γ ∑V
v = 1βv

� �
∏V

v = 1Γ βvð Þ
∏V

v = 1Γ nzv + βvð Þ
Γ ∑V

v = 1 nzv + βvð Þ� � :

ð9Þ

For the random variables, we estimate Φ using Eq. (4) and Θ by

θzk j zjx =
mzk j zjx + αzk

∑T
z′ = 1 mz′ j zjx + αz′

� � : ð10Þ

We also use Eqs. (6–7) to estimate ψz.

4. Parameter estimation

Exact inference on LDA-style models is an intractable problem. A variety of algorithms have been used for approximate
inference, for example variational EM methods [5], Gibbs sampling [11] [32], and expectation propagation [11] [24]. We chose
Gibbs sampling for its ease of implementation.

As for the hyperparameters α and β, previous sampling-based treatments usually take a fixed values (e.g., α=50/T and
β=0.1). However, we found that in our setting, the models are sensitive to the hyperparameters. We thus used an expectation–
maximization (EM) algorithm to find the optimal values of the hyperparameters bymaximizing the Eqs. (3) or (9). This results in a
Gibbs EM algorithm [2].

Fig. 2. Graphical model of HMATT.
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The algorithm for the parameter estimation in the ATT model can be summarized as follows

1. Initialize z, α, and β.
2. Do until termination

(a) E-step: for each word token wdi in each document d, draw an author xdi and a topic zdi using a Gibbs sampler.
(b) M-step: update ψ using Eqs. (6–7) and find the optimal hyperparameters by maximizing

argmax α;βð ÞlogP x; z;w; t jα;β;Ψ; að Þ:

Here, the probability in the M-step is defined by Eq. (3). For the HMATT model, we simply replace the E-step by drawing an
author–topic pair (xdi, zdi) using a Gibbs sampler and replace the probability in the M-step by Eq. (9).

In the E-step, for sampling a topic for each word token, the posterior probability for the topic and author is (ATT)

P zdi; xdi jz−di; x−di;w; t;α;β;Ψð Þ∝Beta ψtdi
zdi

� �

×
n−di
zdiwdi

+ βwdi

∑v n−di
zdiv

+ βv

� � m−di
xdizdi

+ αzdi

∑z m−di
xdiz

+ αz

� � ð11Þ

or (HMATT)

P zdi; xdi jz−di; x−di;w; t;α;β;Ψð Þ∝Beta ψtdi
zdi

� �

×
n−di
zdiwdi

+ βwdi

∑v n−di
zdiv

+ βv

� � m−di
zdi j zd i−1ð Þxdi + αzdi

∑z m−di
z j zdði−1Þxdi

+ αz

� � ð12Þ

where the superscript −t denotes a quantity, excluding the current instance (the di-th word token).
In the M-step, given the samples z, the optimal α can be computed using fixed-point iteration

αnew
z =

αz ∑d φ mxz + αzð Þ−φ αzð Þð Þð Þ
∑d φ mx + ∑iαið Þ−φ ∑iαið Þð Þ ð13Þ

whereφ xð Þ = dlogΓ xð Þ
dx

andmxz is the number of times topic z has been associatedwith author x. Similar fixed-point iterations can be
used to estimate β [23]. In both the ATT and HMATTmodels we assume that there are T hyperparameters for α and V for β. We can
also consider other prior settings, for example only one α for all topics z or one α for each topic transition θzk j zjx (thus T×T
hyperparameters for α).

When applying the learned topic model to new documents, we can perform a few Gibbs sampling iterations to obtain the topic
for each word in the new document by (ATT as the example)

P zd′ i; xd′ i jz−d′ i;x−d′ i;w; t;α;β;Ψð Þ∝Beta ψ
td′ i
zd′ i

� �

×
nzdiwdi

+ n−d′ i
zd′ iwd′ i

+ βwd′ i

∑v nzdiv
+ n−d′ i

zd′ iv
+ βv

� � m−di
xdizdi

+ αzdi

∑z m−di
xdiz

+ αz

� � ð14Þ

where nzdiwdi is the number learned from the training data and n−d′ i
zd′ iwd′ i

denotes the number of times of word wd’i occurring in the
new document d′, excluding the current instance.

4.1. Parallelization

As the Gibbs sampling algorithm for parameter estimation needs to makemultiple passes over the entire data set, it often takes
multiple days (even weeks) to learn the topic model on a large scale of the scientific literature data, whichmakes it impractical for
many applications. Inspired by the distributed inference for LDA [27], we implement a distributed inference algorithm over
multiple processors for the proposed models. We now use the ATT model as example to explain how we perform the parallel
training of the topic model. The basic idea is to conduct the inference in a “distribute-and-merge” way. In the distribution step,
given P processors, we distribute the document collection D over the P processors, with Dp=D/P documents on each processor.
Then we partition the author-specific (author by topic) count matrix to the P processors and duplicate the other (topic by word,
topic by time) matrices to each processor. For parameter estimation, we conduct Gibbs sampling on each processor for the
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distributed documents for a number of internal iterations independently. In the internal iteration, the duplicated matrices will
be updated independently. Essentially, for performing a fixed number of sampling iterations, wewould like to have a large number
of the internal iterations, accordingly can have a small number of distribution-and-merge steps, which will reduce the
communication cost of duplicating the matrices. However, since the internal iteration updates the duplicated matrices
independently, a large number of internal iterations will result in an incorrect result. Thus, we need a trade-off between the
communication cost and the correctness. In our experiments, we empirically increase the number from 1 and test the difference in
the perplexity of the parallel ATTmodel with the single-machine version, and finally select 5 as the number of internal iteration. In
the merging step, we combine the count matrices to guarantee the consistency of the count matrices. More specifically, we
respectively update each element of two duplicated (topic by word, topic by conference) matrices by

n newð Þ
zw = n oldð Þ

zw + ∑
P

p=1
n pð Þ
zw−n oldð Þ

zw

� �
ð15Þ

ty newð Þ
z = ty oldð Þ

z + ∑
P

p=1
ty pð Þ
z −ty oldð Þ

z

� �
ð16Þ

s2 newð Þ
z = s2 oldð Þ

z + ∑
P

p=1
s2 pð Þ
z −s2 oldð Þ

z

� �
ð17Þ

where the number n(old) with the superscript (old) denotes the count before distribution and the number n(new) with the
superscript (new) denotes the count after merging. The number n(p) denotes the count obtained after the independent sampling
on each processor. The distributed inference algorithm can be considered as an approximation of the single-processor inference
algorithm Experimental results in Section 5 show that such approximation can obtain effective results. So far, the distributed
training algorithm has been implemented using Hadoop.1

4.2. Computational complexity

We analyze the complexity of the proposed topic models. The ATT model has a complexity of O(MDNd̅T), where M is the
number of sampling iterations, andNd is the average number of word tokens in a paper. The HMATTmodel has a higher complexity
O(MDAN ̅dT). In the parallel ATT model, the time complexity is O(M((D/P)DNd̅T)+(M/Ip)(TV)), where Ip is the number of internal
iterations on each processor. (M/Ip)(TV) is the time complexity of duplicating and merging the matrices to/from each processor.
Similarly, the complexity of the parallel HMATT is O(M((D/P)DANd̅T)+(M/Ip)(TV)). We see that with the parallelization over
multiple processors (e.g., 100 processor) and with an appropriate number of internal iterations (e.g., 10), we can obtain a
significant reduction of the time complexity.

5. Experimental results

5.1. Experiment setting

We conducted experiments on two real-world data sets: NIPS conference papers2 and NEWSGROUP posts (emails from two
Yahoo groups).

The NIPS data set [10] consists of the full text of the 12 years of proceedings, from 1988 to 1999, of the Neural Information
Proceedings Systems (NIPS) conferences. The data set contains D=1740 papers with A=2442 authors. For the NEWSGROUP data

1 http://hadoop.apache.org/core/.
2 http://www.cs.toronto.edu/ roweis/data.html.

Fig. 3. Average perplexity of five-fold cross-validation obtained by LDA, AT, ATT, and HMATT on the two data sets: Yahoo Newsgroup (left) and NIPS papers (right).
Fig. 4. Evolution of five topics with time on NEWSGROUP (HMATT). For a better view of the trend, we use a square root function for each topic probability here.
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set, we randomly chose D=1218 posts from the NBA2DAY and JENA groups of Yahoo from 2004 to 2005. These posts were
authored by A=216 unique authors (each post has one author). The author information of NIPS is extracted from the paper's
metadata information and the authors in NEWSGROUP are the owners of the posts. We do not apply advanced NLP techniques
(such as named entity recognition) to the data set, and simply preprocess each data set by (a) removing stopwords and numbers;
(b) removing words that appear less than three times in the corpus; and (c) downcasing the obtained words. Finally, we obtained
28,928 unique words and a total of 2,985,728 word tokens in the NIPS data set and 8223 unique words and a total of 180,500word
tokens in the NEWSGROUP data set. In NIPS, each document's timestamp is determined by the year of the proceedings and in
NEWSGROUP; each post's timestamp is determined by the posted time (with format “YYYY-MM-DD Hour:Min:Sec”).

In the rest of the section, we first compare the proposed models with Latent Dirichlet Allocation (LDA) and the Author–Topic
(AT) model. Then we analyze the results obtained by our models on the two data sets.

5.2. Perplexity and time prediction

We evaluated the performances of the proposed models and the LDA and AT models in terms of Perplexity, a standard measure
for estimating the performance of a probabilisticmodel. The perplexity of an unseen test document (wd, ad)2Dtest is defined as

Perplexity wd jadð Þ = exp − P wd jadð Þ
Nd

� �
: ð18Þ

Table 3
Three topics discovered by ATT (above) and HMATT (bottom) for the NEWSGROUP data set. Each topic is shown with the top 10 words and their corresponding
conditional probabilities. Below are top 6 authors associated with each topic. The titles are our interpretation of the topics.

Topic #4 (ATT) “Yao at preseason” Topic #8 (ATT) “RDQL querying” Topic #9 (ATT) “Ontology reasoning”

Camp 0.017670 Query 0.050047 Reason 0.039988
Yao 0.013837 RDQL 0.038735 File 0.024535
Preseason 0.010689 Type 0.026921 ABox 0.022274
Pippen 0.009594 OWL 0.018123 Data 0.018505
Million 0.008910 Result 0.017118 TBox 0.018128
China 0.007678 id 0.013850 Question 0.016998
Basketball 0.007268 RDF 0.012593 Model 0.016244
NET 0.006583 Namespace 0.011337 Owl:class 0.013606
Contract 0.006446 kn:id 0.010080 Ontmodelspec 0.012852
Training 0.005899 Jena 0.009074 Transition 0.011721
GarysLists 0.842239 Chris Dollin 0.465006 Andrew_crapo 0.667318
Alper Kuray 0.004627 Seaborne 0.104389 Ignazio Palmisano 0.040059
GaryBayside 0.003134 Sven Abels 0.055160 Ellis R Watkins 0.028334
Scott Davis 0.002090 Abelssoft 0.050119 Howard Goldberg 0.027846
Gary Gentile 0.000781 David Vallet 0.049822 Dave Reynolds 0.023449
Yorin15 0.001642 Andy 0.047450 Alessandro Di Bella 0.005374

Topic #44 (HMATT) Topic #11 (HMATT) Topic #1 (HMATT)

Camp 0.018086 RDQL 0.032128 Reason 0.025874
Preseason 0.012784 Query 0.014283 ABox 0.015941
Yao 0.011998 Property 0.012290 TBox 0.014995
Train 0.008856 Subject 0.009959 File 0.011841
China 0.007678 Listsubject 0.009298 Model 0.011683
Exhibit 0.007482 Jena 0.006981 Statement 0.011210
Shanghai 0.007285 Type 0.006651 Problem 0.010580
Pippen 0.005518 RDF 0.006320 Query 0.010264
NBA 0.005322 Creator 0.006320 Classpath 0.010107
Scout 0.005125 Null 0.005989 Spec 0.009318
GarysLists 0.875649 Soledad Calo 0.295944 Alessandro Di Bella 0.239888
Alper Kuray 0.001238 Chris Dollin 0.204967 Andrew_crapo 0.237099
Bounce mybuns12 0.001009 Seaborne 0.103311 Chris Dollin 0.219491
Gary Gentile 0.000781 Abelssoft 0.072490 Dave Reynolds 0.020921
Yorin15 0.000552 Ian Dickinson 0.022483 Elias Torres 0.020223
Robert Littal 0.000552 Ignazio Palmisano 0.0067015 Ignazio Palmisano 0.019351

Table 2
Accuracy of time prediction (%).

LDA AT ATT HMATT

NIPS 40.75 43.81 84.37 86.46
NEWSGROUP 51.57 55.90 88.01 89.24
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We compute the perplexity of a held-out test set to evaluate each topic model. All the topic models were trained using
the same data and with the same Gibbs EM algorithm. Better generalization performance is indicated by a lower perplexity.

We present the five-fold cross-validation results. All topics were extracted at the 2000th iteration of the Gibbs sampler. All
experiments were carried out on a Server runningWindows 2003 with two Dual-Core Intel Xeon processors (3.0 GHz) and 8 GB
memory. It takes 20 min and 50 min, respectively, to estimate the LDA model and the AT model, 60 min for the ATT model and
1.35 h for the HMATT model. When the training is distributed over 8 processors, the speedup is 3.7. That is, for training the ATT
and the HMATT models, it takes only 20 min (ATT) and 30 min (HMATT).

Fig. 3 plots the average perplexity of the fourmodels with different numbers of topics. First we find that ATT and HMATT have
similar patterns to LDA: the perplexity score first decreases with increasing numbers of topics, and then increases when the
number becoming large. We see that on the two data sets, both the ATT and HMATT models clearly outperform LDA and are
slightly better than the AT model in terms of perplexity. The AT model outperforms LDA on NEWSGROUP and is better than LDA
on NIPS when the number of topic is small; however it underperforms LDA as number increases. We conduct a statistical test.
Specifically, we train the model on the training data set (five-fold cross-validation) and calculate the perplexity of the test data
set according to the trainedmodel. Taking the number of topics as T=50, the p-values of the sign test are 0.00089 and 0.0062 by
LDA and AT on Yahoo and 0.0089 and 0.0074 on NIPS, which indicates that at a significance level of 0.01, the improvements of our
models over the baseline models are statistically significant.

We also performed an experiment of time prediction on the two data sets, that is, predicting the timestamp for the given
document. We used accuracy as the evaluation measure, and compared our models with different topic models. We want to
show whether a model that simultaneously models the evolution of document contents and author interests can improve
the accuracy of prediction. Specifically, on NIPS, given a paper with authors, we predict its publication year, and on
NEWSGROUP, given a post with an author, we predict its posting year and month. We predict the timestamp for each
document by choosing the discretized timestamp that maximizes the posterior, which is calculated by multiplying the
timestamp probability of all word tokens, e.g., in ATT and HMATT, we have argmaxtΠ

Nd
i = 1p t jψzi

� �
. In the LDA and AT models,

we use the estimated model and the associated timestamp to each document to obtain the timestamp by maximizing
argmaxtΠ

Nd
i = 1p t jzið Þ.

Table 4
Three topics discovered by ATT (above) and HMATT (bottom) for the NIPS data set.

Topic #9 (ATT) “Support vector machine” Topic #22 (ATT) “Speech recognition” Topic #37 (ATT) “Neural network”

Distance 0.026854 Speech 0.051015 Network 0.067485
Kernel 0.027055 Word 0.040950 Dynamic 0.042527
Vector 0.027714 Phoneme 0.030456 Neural 0.031825
Set 0.017547 Speaker 0.020019 System 0.025906
Method 0.013402 Recognition 0.018532 State 0.019793
Pattern 0.012259 Perform 0.013728 Neuron 0.019583
Support 0.012031 Acoustic 0.009725 Equation 0.019373
Machine 0.010090 Test 0.009668 Point 0.016115
Train 0.009291 Train 0.009611 Connect 0.012770
Transform 0.009090 Phonetic 0.009210 Function 0.010966
Patrice Simard 0.068918 Alex Waibel 0.114568 O.J. Pineda 0.019984
Alex Smola 0.059160 Ajay Jain 0.028099 R.M. Westervelt 0.019966
Vladimir Vapnik 0.035141 Ronald Cole 0.024188 Todd K. Leen 0.019349
Holger Schwenk 0.033370 Candace Kamm 0.021002 Andre Longtin 0.014741
Trevor Hastie 0.027068 Victor Zue 0.018742 Frank Eeckman 0.014088
Jonathan Baxter 0.025006 Regis Cardin 0.018395 H. Sebastian Seung 0.013099

Topic #14 (HMATT) Topic #36 (HMATT) Topic #2 (HMATT)

Vector 0.034456 Speech 0.072350 Network 0.120764
Support 0.028355 Word 0.034516 Neural 0.090750
Distance 0.022793 Recognition 0.0290371 Unit 0.060281
Kernel 0.020901 Speaker 0.022783 Input 0.050072
Tangent 0.015369 HMM 0.019625 Train 0.040774
Pattern 0.014881 Perform 0.011329 Output 0.036331
Machine 0.010782 Acoustic 0.010623 Learn 0.029981
Error 0.010753 Phoneme 0.009792 Weight 0.028338
Margin 0.009864 System 0.009523 Hidden 0.027907
Vector 0.009291 Phonetic 0.008990 Layer 0.025532
Alex Smola 0.059160 Alex Waibel 0.123784 Michael Mozer 0.017901
Vladimir Vapnik 0.045141 Renato De Mori 0.067076 Geoffrey Hinton 0.013248
Chris Burges 0.034678 Ronald Cole 0.042206 Dean Pomerleau 0.011453
Nello Cristianini 0.022169 Khalid Choukri 0.027352 Terrence Sejnowski 0.011175
Trevor Hastie 0.017031 Candace Kamm 0.023007 Alex Waibel 0.010990
John Denker 0.013989 Regis Cardin 0.010139 Paul Munro 0.009571
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Table 2 shows the five-fold cross-validation results of the time prediction for the two data sets. We see that ATT and HMATT
clearly outperform the LDA and AT models. Again, HMATT outperforms ATT by +2.09% and +1.23% in terms of accuracy.

5.3. Analysis

We analyzed the results of ATT and HMATT on the two data sets. For simplicity, for all experiments in this section we fix the
number of topics (T=50).

Tables 3 and 4, respectively, show three topics on the two data sets obtained by the ATT and HMATT models, with aligning by
the KL divergence of the topics. Figs. 4 and 5 plot the occurrence probability of five topics, respectively, from NEWSGROUP and
NIPS at different times, using HMATT.

By comparing the two figures, we can see several interesting results. The NEWSGROUP data shows stronger temporal patterns.
Many of the topics found have sharply shaped trends. Some topics (e.g., Topic #4 and Topic #6) from NEWSGROUP are very
sensitive to the time. These results have a clear explanation. Topic #4 talks about “Yao at preseason”. As the preseason of the NBA is
usually from Sep. to Oct., the topic comes into prominence sharply at that time and becomes silent very quickly when the

Fig. 5. Evolution of five topics on NIPS (HMATT).

Fig. 6. Evolution of representative words in the topic “Yao at preseason” (HMATT).

Fig. 4. Evolution of five topics with time on NEWSGROUP (HMATT). For a better view of the trend, we use a square root function for each topic probability here.
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preseason is over. The reason that the word “Yao” is hot in the topic is that Chinese player Ming Yao became a highlight in the NBA
in 2004 and obtained great achievements in that season.

Topics discovered from the NIPS data are relativelymore stable, as researchwork often spans a longer period from its rise to fall
in prominence. We can still see some interesting trends: neural networks become popular at the beginning of 90s and taper off
slowly after that; while probabilistic models and support vector machines have become more popular in recent years. In the
following analysis, we focus on the analysis of the NEWSGROUP data set due to its stronger temporal patterns and also because
there is already much research analyzing the NIPS data, e.g., [31] and [40].

Fig. 6 plots the trends of changes in a few representative terms in the topic “Yao at preseason” by HMATT. It is very interesting
that the words “camp”, “Yao” exhibit higher emission rates in the period of the NBA preseason (from Aug. to Oct.) and taper off
quickly with the end of the preseason (Nov.). The words “Pippen” and “China” quickly come into prominence in Oct. 2004 because
there were many discussions about Pippen's retirement after the preseason and there was a match played in China.

Fig. 7 plots the changes in interests of five representative authors on the topic “Ontology reasoning”, by HMATT. We can again
see very sharply shaped changes. It seems that people usually like to post something for intensive discussion on the newsgroup
and quickly become silent or switch to another topic of discussion.

In addition, we plot changes in the topic interest of the author “GarysLists” in five different topics by using HMATT, as shown in
Fig. 8. We see on NEWSGROUP, the author's interest may change quickly on some topic (e.g., Topic #40). There are also some
authors who seem to have stable interests, for example, from Apr. 2004 to Jan. 2005, the author “milicic9” posted different kinds of
messages on Topic #10 and seldom posted messages on other topics.

6. Conclusion

In this paper, we have investigated the problem of how to model trends of changes in the associated data simultaneously. We
have proposed two generative models, i.e., Author–Time–Topic (ATT) model and Hidden Markov Author–Time–Topic (HMATT)
model, to perform the task. We have used Gibbs EM for approximate inferences. Experiments show that the proposed models
clearly outperform the state-of-the-art topic models, the LDA and the Author–Topic models in terms of perplexity and time
prediction. Analysis on the topic finding results also unveils some interesting patterns in the topics.

There are many potential future directions for this work. It would be interesting to investigate the regularization method (e.g.,
[22]) for modeling the evolution of the associated data more smoothly. It would also be interesting to model the citation
information in the evolution model (e.g., [8]). In addition, it would also be interesting to apply the method to other domains, for
example modeling the evolution of image and associated tags.

Fig. 8. Interest change of the author “GarysLists” in five different topics (HMATT).

Fig. 7. Evolution of five representative authors in the topic “Ontology reasoning” (HMATT).
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