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Abstract. Graph convolutional networks (GCNs) have been proven ex-
tremely effective in a variety of prediction tasks. The general idea is
to update the embedding of a node by recursively aggregating features
from the node’s neighborhood. To improve the training efficiency, modern
GCNs usually sample a fixed-size set of neighbors uniformly or sample
according to nodes’ importance, instead of using the full neighborhood.
However, both the sampling strategies ignore the reliability of a link be-
tween the target node and its neighbor, which can be implied by the
graph structure and may seriously impact the performance of GCNs. To
deal with this problem, we present a Graph Convolutional Network using
a Reliability-based Feature Aggregation Mechanism called GraphRFA,
where we sample the neighbors for each node according to different kinds
of link reliability and further aggregate feature information from different
reliability-specific neighborhoods by a dual feature aggregation scheme.
We also theoretically prove that our aggregation scheme is permutation
invariant for the graph data, and provide two simple but effective in-
stantiations satisfying such scheme. Experimental results demonstrate
the effectiveness of GraphRFA on different datasets.

Keywords: Graph convolutional network · Link reliability · Neighbor-
hood definition · Dual feature aggregation scheme.

1 Introduction

Node embedding techniques learn low-dimensional representations for nodes in
graphs and effectively preserve the structure information [6,12]. Among related
algorithms [1, 7, 8, 10, 13, 15, 21, 22, 24], graph convolutional networks (GCNs)
adopt deep learning on the graph data and achieve outstanding performance
on various tasks, such as node classification, community detection, link predic-
tion and so on [13, 15, 26, 29]. The general idea behind GCNs is to update the
representation of each node by aggregating the features from the node’s neigh-
borhood. The feature information of a node can be initialized by extracting
the side information of the node. In traditional models, all the n-hop neighbors
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Fig. 1. The overview framework of GraphRFA.

form the neighborhood (i.e., the receptive field) of a given node, where n is less
than or equal to the number of layers in the model. Since GCNs learn the node
representations through recursive neighborhood aggregation, the large number
of neighbors will lead to computational inefficiency. To make the memory and
runtime of a single batch training controllable, modern GCNs usually sample a
fixed-size set of neighbors for each node, instead of using the full neighborhood.

The uniform sampling strategy treats every node equally [4, 13]. Intuitively,
not all the neighbors are useful for the target node, some non-uniform strategies
are thereby designed to sample a set of neighbors according to the global node-
importance such as pagerank centrality [3,5,25]. However, most methods do not
consider the local correlations between the target node and its neighbors, making
some important neighbors of the target node ignored. For example, in a social
network, if one of your close friends is not an influential user in the whole social
network, her/his influence on you will be weakened. Besides, a graph contained
spurious connections can lead to ineffective graph convolution caused by the
unreliable neighbors [27].

This paper aims to propose a link-reliability based GCN model, which pays
attention to the likelihood that a link truly exists in a graph, i.e., the link relia-
bility [11]. A higher score of link reliability indicates a more reliable relationship
between two nodes. To achieve the goal, we try to answer the following questions:
how to effectively measure the link reliability? And how to incorporate the recep-
tive fields resulted by different measures together? To address these challenges,
we present GraphRFA, a Graph Convolutional Network using a Reliability-based
Feature Aggregation Mechanism. Figure 1 illustrates the overview framework of
our model. Specifically, the model contains two main components:

Link-reliability based Neighborhood Definition: To measure the link
reliability, we adopt random-walk methods to capture the characteristics of the
graph structure from two views, i.e., the similarity between two nodes and the
centrality of a link. Then we use a drop-bottom approach to sample neighborhood
for each node, which drops the most unreliable neighbors and uniformly samples
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a fixed-size set of neighbors from the remaining ones. Compared with previous
strategy, we allow the moderately reliable neighbors to be sampled. Moreover, we
can adjust the ratio of dropped neighbors to trade off between uniform sampling
and non-uniform sampling.

Dual Feature Aggregation: Since we measure the link reliability from
different views such as similarity and centrality, we design a dual feature ag-
gregation scheme to perform convolution across different receptive fields, which
are composed by the neighbors sampled from different views. More specifically,
a node-level aggregator aggregates the node features from each receptive field
for each node, then a field-level aggregator merges the features from different
receptive fields for each node. Unlike learning over images and sentences, the
neighbors of a node have no natural order [13]. So we give theoretical analysis
on our aggregation scheme to guarantee the permutation invariant requirement.

The contributions of our work can be summarized as follows:

– We propose a graph convolutional network GraphRFA, which incorporates
the link reliability in neighborhood definition to capture the reliable infor-
mation from the graph structure and the node features.

– In GraphRFA, different measures of link reliability can be supported simul-
taneously, and a dual feature aggregation scheme is proposed to aggregate
feature information from the different kinds of reliability-specific receptive
fields. We also give the theoretical analysis to guarantee our aggregation
scheme is permutation invariant for the graph data.

– We evaluate our algorithm by downstream tasks. Experimental results show
the effectiveness of GraphRFA on different graphs.

2 Related Work

Graph Convolutional Networks. Recently, a large number of graph convolu-
tional networks are proposed, which generalize the convolution operation to the
permutation invariant graph data and achieve outstanding performance on vari-
ous tasks over graphs. As one of the pioneer works, [15] is designed based on the
full graph Laplacian, thus it is hard to generate embeddings for previously unseen
nodes efficiently. GraphSAGE [13] solves the efficiency problem by a sampling-
based inductive learning method. Graph Attention Network (GAT) [22] pays
different attentions to different neighbors by adding a self-attention layer. Many
advanced variants are proposed [18,24]. For example, GIN [24] formally charac-
terizes the properties of a powerful graph neural network and is as powerful as
Weisfeiler-Lehman graph isomorphism test (WL test) [23].

Neighborhood Definition. The basic idea behind existing graph convolu-
tional networks is to aggregate information from the neighborhood of the target
node. Here, we summarize two kinds of approaches to define the neighborhood.

Adaptive learning approaches aim to learn the weights of different nodes
in the receptive field. GAT [22] and GeniePath [18] are the representative ap-
proaches. GAT uses the self-attention mechanism to determine the importance
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of each one-hop neighbor. As an extension of GAT, GeniePath uses the LSTM-
like function to filter signals from the n-hop neighbors. Nevertheless, both GAT
and GeniePath do not emphasize the neighborhood sampling.

Sampling-style approaches aim to reduce the size of the receptive field.
Typically, existing approaches reduce the receptive field by sampling a set of
neighbors for each node uniformly [13] or sampling according to the nodes’ im-
portance [3, 5, 25]. Although previous sampling-style GCNs have achieved out-
standing performance, the authors of [4] said there was no theoretical guarantee
on the convergence of the stochastic training algorithm. Thus, they propose a
novel control variate based algorithm, denoted as CV-GCN, which achieves a
similar convergence with the exact algorithm.

Discussion. In summary, neighborhood definition is a fundamental step in
GCNs. To ensure the scalability, we aim to design a sampling-style algorithm.
Distinct from the previous sampling-based algorithms, we consider the local
correlations between target node and its neighbors from different views, hence
we incorporate different kinds of link reliability in the sampling process.

3 Problem Formulation

3.1 Problem Definition

Let G = (V, E) denote a graph, where each v ∈ V denotes a node and each e ∈ E
denotes a link. Notation Xv ∈ Rd0 indicates the initial feature vector of node v.
In real datasets, there are usually noisy links contained in E .

The problem is to learn a representation for each node v in G, such that the
representation can not only capture the characteristics of the local graph struc-
ture of v, but also emphasize the reliability of the links between target node and
its neighbors. In other words, we aim to learn the embeddings hi, hj ∈ Rd for
nodes vi and vj such that hi, hj can be well distinguished if their local neigh-
borhoods are structurally different or the link between vi and vj are unreliable.

3.2 Background

In the deep graph representation learning, hidden feature of node v at the l-th

layer of the model is denoted by h
(l)
v ∈ Rdl , and h

(0)
v = Xv.

Graph convolution in [15] requires to calculate the propagation matrix Â =

D̃−
1
2 ÃD̃−

1
2 . Ã is the adjacency matrix of G with self-connections. D̃ii =

∑
j Ãij .

The matrix of hidden features at the l-th layer is updated by:

H(l) = σ
(
ÂH(l−1)W (l)

)
(1)

where the weight matrix W (l) is learnable, and σ is an activation function.
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GraphSAGE [13] trains a series of aggregators to aggregate information from
the node’s neighborhood, so that the trained aggregators can generate embed-
dings for previously unseen nodes effectively. [24] summarizes the strategy of
neighborhood aggregation by AGGREGATE and COMBINE steps, given the

one-hop neighborhood N (v) of node v, the l-th layer updates h
(l)
v by:

h
(l)
N (v)=AGGREGATE

(l)
(
{h(l−1)u |u∈N (v)}

)
,h(l)v =COMBINE(l)

(
h
(l)
N (v), h

(l−1)
v

)
(2)

Among different kinds of aggregators, GCN-aggregator [13] is an inductive
variant of [15], and is essentially a modified mean-based function:

h(l)v = σ
(
W (l) ·MEAN

(
h(l−1)v ∪ {h(l−1)u ,∀u ∈ N (v)}

))
(3)

4 The Proposed Approach

In this section, we describe the structure of our model. GraphRFA consists of two
major components: neighborhood definition and dual feature aggregation scheme.
Distinct from existing studies on the neighborhood definition, we sample neigh-
bors for each node based on link reliability and devise a drop-bottom strategy
to trade off between uniform sampling and non-uniform sampling. To further
simultaneously support different measures of link reliability, a dual feature ag-
gregation scheme is proposed to aggregate feature information from the receptive
fields resulted by different reliability measures.

4.1 Neighborhood Definition based on Link Reliability

We define the fixed-size neighborhood based on the measures of link reliability.
The neighbors connected by more reliable links should propagate more useful
information to the target nodes.

Random-walk based Measures for Link Reliability. Different measures
of link reliability can be used in GraphRFA. To propose a general algorithm, we
measure the link reliability based on graph structure without using any attribute
of a node or a link. Specially, similarity and centrality can be regarded as the
views of designing the link-reliability measures [20,28].

Under the similarity hypothesis, links connecting similar nodes are supposed
to have high existence-likelihoods [20]. Following such an assumption, many well-
known path-dependent indices are proposed, such as CN (Common Neighbors)
[16] , LP (Local Path) [30] and Katz index [14]. The number of paths between two
nodes is used to quantify the link reliability. Intuitively, the highly interconnected
nodes usually tend to be similar.

Under the centrality hypothesis, links with higher centrality is more reliable
[28]. In other words, links acting as important bridges deserve high reliability
scores, because they directly or indirectly connect a large number of nodes in a
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graph. Both PA (Preferential Attachment) [2] and EB (Edge Betweenness) [9]
are typical centrality-based indices.

Despite their success, most of the above measures are computational ineffi-
cient. Our goal is to adopt the random-walk based methods, as random walk is
computationally efficient in terms of both space and time requirements. In this
paper, we focus on the undirected graphs, although our method can be extended
to other types of graphs.

Similarity-based Link Reliability: In traditional path-dependent indices
such as LP and Katz, the reliability of the link (vi, vj) is proportional to the
number of paths between vi and vj . From the perspective of random walk, the
more paths between vi and vj exist, the more likely the random-walker walks
between vi and vj . Therefore, we simulate local random walks with walk-length
r starting from the initial node for t times, then compute the normalized visit-
count to formulate the similarity-based link reliability:

Rij =
ci→j + cj→i∑

vk∈V ci→k +
∑
vk∈V cj→k

(4)

where ci→j is the visit-count of vj from the initial node vi. Specially, in the
neighborhood definition, we emphasize the neighbors that the target node tends
to follow, so we sample neighbors according to the normalized visit-count from
the target node to each of its neighbors through the local random walks.

Turn to traditional similarity-based measures, a unified framework Rij =∑
βl|pathslij | can formulate CN, LP and Katz, where for CN, l = 2, for LP,

l = 2, 3, and for Katz, l = 1, 2, 3, · · · ,+∞ [19]. |pathslij | represents the number

of paths between vi and vj with path-length l. Free parameter βl adjusts the
weight of a path with path-length l. Particularly, the walk-length r in our method
corresponds to the maximal path-length.

Centrality-based Link Reliability: We put a walker on the initial node vi
and simulate random walks over the graph. Let P be the transition probability
matrix, the probabilities that the walker locates at any other nodes at the t-th
step is computed by:

πi(t) = PTπi(t− 1) (5)

At the stationary state, the probability that the walker locates at vj is πij =
dj

2|E| ,

where dj is the degree of vj , |E| is the number of links in graph [17]. In other
words, the stationary probability that the random-walker starting from any node
locates at node vi is π∗i = di

2|E| . A higher probability π∗i indicates that it is more

likely to locate at vi. Thus, if both π∗i and π∗j are high probabilities, the walker
can easily walk to both vi and vj from any node, which means a large number
of nodes can be connected by the link (vi, vj). According to the above analysis,
the centrality-based link reliability can be formulated as:

Rij = π∗i · π∗j =
di

2|E|
· dj

2|E|
∝ di · dj (6)

Specially, Eq. 6 precisely corresponds to the algorithm of Preferential At-
tachment (PA).
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Fig. 2. Illustration of the link-reliability based neighborhood definition. In the example,
the green nodes denote the sampled neighbors, the dashed nodes denote the dropped
unreliable neighbors, and the grey areas indicate the resulted receptive fields.

Neighborhood Function. Given a node in a graph, the neighborhood function
N (·) draws Sl one-hop neighbors for the node at the l-th layer. We provide two
approaches to define N (·). The core ideas behind them are shown in Figure 2.
Both approaches rank all one-hop neighbors for each node according to the link
reliability between the node and its neighbors, while the difference is that:

Select-Top selects the top neighbors to form a fixed-size neighborhood. This
straightforward approach has been utilized in previous attempts [3], which rank
the one-hop neighbors according to nodes’ importance rather than link reliability.

Drop-Bottom firstly drops the most unreliable k% neighbors and then uni-
formly samples from the remaining ones. k%, named as dropping rate, is a hyper-
parameter to be tuned to trade off between uniform sampling and non-uniform
sampling.

4.2 Dual Feature Aggregation

Based on different measures of link reliability, we assign different receptive fields
to each node. So we devise a dual feature aggregation scheme to perform convo-
lution across different receptive fields from the node-level and the field-level.

Node-level Aggregator. The node-level aggregator acts on each receptive
field. Theoretically, any candidate function satisfying the permutation invariant
requirement can be applied. The default node-level aggregator in our model
follows state-of-the-art model GIN [24], in which the graph convolution for node
vi at layer l is defined as:

h
(l)
i = MLP (l)

((
1 + ε(l)

)
· h(l−1)i +

∑
vj∈N (vi)

h
(l−1)
j

)
(7)

where MLP (l) is the multi-layer perceptron at the l-th layer, and ε is a learnable
parameter or a fixed scalar.

Since different measures of link reliability are adopted in section 4.1, we derive
a similarity-based neighborhood function N s (·) and a centrality-based neigh-
borhood function N c (·) to produce the receptive field respectively. That means
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we have two node-level aggregators αs (·) and αc (·) to compute the reliability-
specific embeddings hs, hc for each node in a graph.

Field-level Aggregator. To further aggregate reliability-specific embeddings
from different receptive fields, we develop the field-level aggregator. A basic re-
quirement for the field-level aggregator F is the permutation invariant property,
which is formally defined as:

Definition 1. Let H be the feature set of nodes in graph G, and let σ be
a permutation of {1, · · · , n}. σ (H) is a new feature set of nodes given by
[σ (H)]i = Hσ(i). Mapping function F is said to be permutation invariant, if
all the permutations σ of input H satisfy: F (σ (H)) = σ (F (H)).

Associative property of permutation invariant manner has been discussed in [18]:

Remark 1. If the output of function α is invariant to the permutations of the in-
put H, and function ρ is independent of the orders of H, ρ◦α is still permutation
invariant with respect to H.

Here, the function α corresponds to the node-level aggregator. Suppose we
have m permutation invariant node-level aggregators, and each of them cor-
responds to a certain measure of link reliability, we need to prove that if we
integrate different node-level aggregators, the result still satisfies the property
of permutation invariance.

Theorem 1. If the field-level aggregator F can be decomposed by Eq. 8, F is
permutation invariant.

F (H) =
∑m

i=1
ρi (αi (H)) (8)

where the node-level aggregation function αi is permutation invariant, and the
function ρi is independent of the orders of input H.

Proof. We need to show that F in Theorem 1 satisfies the condition of Definition
1 (i.e., the permutation invariant property). In other words, for any permutation
σ of input H, F (σ (H)) = σ (F (H)). Hence, we write F (σ (H)) using Eq. 8 and
derive the following equality:

F (σ (H)) =
∑m

i=1
ρi ◦ αi (σ (H)) (9)

The argument of αi is invariant under the permutation σ, and ρi is independent
of the orders of H. According to Remark 1, we can derive ρi ◦ αi (σ (H)) =
σ (ρi ◦ αi (H)). Then, Eq. 9 can be rewritten as:

F (σ (H)) =
∑m

i=1
σ (ρi ◦ αi (H)) = σ

(∑m

i=1
ρi ◦ αi (H)

)
= σ (F (H)) (10)

where the equality follows Definition 1. Thus, we prove that Eq. 8 is one kind of
field-level aggregator that implies the permutation invariance.
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In this paper, we mainly explore two simple but effective instantiations of
Theorem 1.

Mean-pooling Aggregation: We take the weighted-mean of node’s reliability-
specific embeddings as the candidate field-level aggregator:

hi = λ · [αs (H)]i + (1− λ) · [αc (H)]i (11)

where λ is learnable or fixed. Eq. 11 is a simplest formalization of Theorem 1. 1

Concatenation Aggregation: We concatenate the reliability-specific em-
beddings of node vi, then perform a linear transformation to reduce the dimen-
sion. The weight and bias of transformation are shared across all nodes, which
helps reduce over-fitting. Formally, the concatenation aggregator is defined as:

hi = [[αs (H)]i, [αc (H)]i] ·W + b (12)

Next, we show that Eq. 12 satisfies Theorem 1. Eq. 12 can be composed into
the form of ([αs (H)]i ·Ws + bs) + ([αc (H)]i ·Wc + bc), i.e., [ρs ◦ αs (H) + ρc ◦
αc (H)]i, where α is the reliability-specific node-level aggregator and ρ is the
linear transformation.

4.3 Optimization

We try two kinds of optimizations. The first one leverages the labels of a down-
stream supervised task such as multi-label classification to optimize the cross-
entropy loss function. The second one directly optimizes the popular graph-based
loss function [13], so that the nearby nodes tend to have similar embeddings,
while disparate nodes tend to have highly distinct embeddings. We optimize the
loss function using Adam optimizer.

4.4 Complexity Analysis

When quantifying the link reliability, the centrality-based measure is propor-
tional to the node degree, while we need to simulate local random walks to
compute the similarity-based measure. We set r to be the walk length, and we
repeat the random walks on G = (V, E) from each initial node for t times. The
computation complexity of local random walk is O (|E|+ |V|rt) on a weighted
graph while O (|V|rt) on an unweighted graph. We rank all one-hop neighbors
according to the link reliability. The computation complexity is O (|V|d · logd),
where d is the average degree in G. Due to the sparsity of most real graphs (i.e.,
d � |V|), we simplify O (|V|d · logd) to O (|V|). As for the graph convolution,

the computation complexity is O
(
|V| ·

∏L
l=1 Sl

)
, where Sl, l ∈ {1, 2, 3, · · · , L}

is the neighbor sampling size at the l-th layer, and Sl � |V|. The convolution
complexity of GraphRFA is the same as that of other sampling-style GCNs.

1 We set λ = 0.5 in our experiments.
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Table 1. Summary of the datasets used in our experiments

Dataset #Nodes #Edges #Labels #Features #Aver Degree #Max Degree

PPI-S 14,755 228,431 121 50 31 722

PPI 56,944 818,716 121 50 29 722

Retweet 18,470 48,053 2 79 5 786

Reddit 232,965 57,307,946 41 602 492 21657

5 Experiments

5.1 Experimental Settings

Datasets. The experiments are conducted on the following undirected graphs,
detailed summary is shown in Table 1:

– PPI2: This is a protein-protein interaction network in human tissue. In
this dataset, 4/5 nodes are used for training, and 1/5 nodes are used for
testing (with 54% for validation). Specially, we have a smaller PPI network
containing 14,755 nodes, denoted as PPI-S.

– Retweet3: This is a political retweet network. We treat this dataset as an
undirected graph. We randomly select 2/3 nodes for training and 1/3 nodes
for testing (with 30% for validation).

– Reddit4: This is a post network from Reddit made in the month of Septem-
ber, 2014. The data in the first 20 days is used for training, and the remaining
is used for testing (with 30% for validation).

For PPI and Reddit, the train-validation-test splits and initial node features
are provided by the original datasets. For the Retweet network without node
attributes, we use one-hot encoding of int(degree/10) as the initial node feature.

Baselines. Among the following baselines, GraphCSC-M adopts importance
based sampling to define the neighborhood for each node. The others adopt the
uniform sampling. GeniePath-lazy learns the importance of different neighbors.

– GraphSAGE: This is a classic model for the inductive graph embedding,
and it uses uniform sampling to control the size of receptive field.

– GIN: This is a state-of-the-art method designed for both node classification
and graph classification. Emphatically, it performs as powerful as WL test.

– GeniePath-lazy: This algorithm is an extension of GAT and outperforms
GAT shown in [18]. A path layer is designed for both breadth and depth
exploration. Compared with GeniePath, GeniePath-lazy postpones the eval-
uations of the adaptive depth function. Through the experimental evaluation,
GeniePath-lazy converges faster than GeniePath in most cases [18].

2 http://snap.stanford.edu/graphsage/
3 http://networkrepository.com/soc-political-retweet.php
4 http://snap.stanford.edu/graphsage/



Graph Convolutional Network for Link-reliability based Node Embedding 11

– GraphCSC-M: This is a typical GCN algorithm that defines the neigh-
borhood according to nodes’ importance, which is quantified by the node
centrality in the whole graph, and this algorithm applies the attention mech-
anism to the graph convolution. The authors provide five possible centrality
measures. Considering solvability and computation cost, we adopt degree-
centrality and pagerank-centrality in the following experiments.

– CV-GCN: This sampling-style algorithm presents a control variate based
method to achieve a similar convergence with the exact GCN [15], even using
a small neighbor sampling size. CV and CVD are two estimators proposed in
CV-GCN, so we choose the better result to present the model’s performance.

Parameter Settings. We implement our algorithm in TensorFlow with Adam
optimizer. All models are implemented under the inductive framework proposed
by [13] except CV-GCN. All models adopt neighbor sampling to guarantee the
scalability. We set the number of layers, neighbor sampling size, output dimen-
sion and batch size to be the same for different models. In detail, we set the
number of layers to be 2, the neighbor sampling size to be S1 = 25, S2 = 10, the
output dimension to be 256, the training batch size to be 512 and the validation
batch size to be 256. Following [13], we subsample edges so that the maximum de-
gree is 125. Specially, we adjust the neighbor sampling size and maximum degree
when comparing with CV-GCN. Referring to the experimental setups in [24], we
fix ε in Eq. 7 to be 0. In GIN and GraphRFA, we concatenate the node’s previ-
ous layer representation with the aggregated feature vector computed by Eq. 7,
and we find the concatenation operation can lead to a better prediction result.
We simulate random walks with walk-length 3 starting from each initial node
for 100 times to measure the similarity-based link reliability. Then we use the
drop-bottom strategy to sample neighbors and perform a parameter sweep on
dropping rates {0.2, 0.4, 0.6, 0.8}.

Evaluation Settings. We optimize GraphRFA under the supervised setting
and unsupervised setting. Under the unsupervised setting, we put the learned
embeddings to a logistic regression classifier for node classification. Specially
for the Reddit, we randomly sample 10000 nodes from the training data and
6000 nodes from the testing data after finishing the unsupervised representation
learning, and conduct the logistic regression based on the sampled nodes. We
treat the binary classification on the Retweet as a special case of multi-class
classification, and use Micro F1 score and Macro F1 score for evaluation on all
datasets. Analogous trends hold for F1 score on the Retweet. Please note the
theoretical guarantee of CV-GCN is proved under the supervised setting [4], so
we do not evaluate CV-GCN under the unsupervised setting.

5.2 Experimental Results

Comparison with the traditional sampling-style baselines. In this sec-
tion, we ran all models for 300 times. Note that GraphCSC-M proposed by [3]
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Table 2. Comparison under the supervised setting. Detail testing results of the node
classification are shown (epoch=300).

Micro F1 Macro F1

PPI-S PPI Retweet Reddit PPI-S PPI Retweet Reddit

GraphSAGE-GCN 0.5455 0.5525 0.8889 0.9255 0.3624 0.3738 0.8812 0.8865

GIN 0.7058 0.8099 0.8995 0.9460 0.6177 0.7656 0.8924 0.9195

GeniePath-lazy 0.7908 0.8808 0.8983 0.9491 0.7364 0.8559 0.8903 0.9216

GraphCSC-M∗ 0.5918 0.7264 0.9374 0.8823 0.4967 0.6635 0.9328 0.8229

GraphRFA (mean) 0.7357 0.8491 0.9331 0.9510 0.6633 0.8166 0.9286 0.9274

GraphRFA(concat) 0.7588 0.8624 0.9353 0.9515 0.6949 0.8338 0.9307 0.9292

GraphRFA∗ (concat) 0.7671 0.8883 0.9353 0.9515 0.7090 0.8662 0.9307 0.9292
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Fig. 3. Comparison under the unsupervised setting. Detail testing results of the node
classification are shown (epoch=300). Here GraphSAGE denotes GraphSAGE-GCN.
Similar trends hold for the Micro F1 score.

incorporates the node-centrality in loss function, however we focus on evaluating
the methods of neighborhood definition and graph convolution. Therefore, we
need to keep loss function the same for all models. The candidate loss functions
are introduced in section 4.3. In light of this, the examined model is essentially
a variant of GraphCSC-M, denoted as GraphCSC-M∗.

Supervised Learning: We perform a parameter sweep on initial learning
rates {0.01, 0.001, 0.0001}. Experimental results are shown in Table 2. As an
extension of GIN, our model consistently outperforms GIN. Among these base-
lines, GeniePath-lazy learns the importance of different neighbors and aggre-
gates node features weighted by the learned importance, however such scheme
will perform better on the algorithm using node’s full neighborhood [18], i.e.,
the neighbor sampling may affect the effectiveness of GeniePath-lazy, while us-
ing the full neighborhood will lead to a large receptive field. Besides, we can
see that GeniePath-lazy obtains better performance under the supervised set-
ting. That is to say the task labels are necessary for learning the neighbors’
importance. GraphCSC-M∗ uses centrality-based sampling to form the recep-
tive field. Compared with this algorithm, our model performs more stable, es-
pecially on PPI and Reddit. In our model, the concatenation aggregator works
better, which can be explained by the more sufficient feature interaction, so we
use GraphRFA (concat) for evaluation in the following experiments. Moreover,
we permit the dropping rates about different link reliability to be distinct, de-
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Fig. 4. Comparison with CV-GCN. Validation results of the supervised node classifi-
cation are shown. (best seen in color).

noted as GraphRFA∗. Compared with GraphRFA, GraphRFA∗ obtains better
performance on the PPI.

Unsupervised Learning: We perform a parameter sweep on initial learn-
ing rates {0.01, 0.001, 0.0001}. From Figure 3, we can see that GraphCSC-M∗

outperforms other baselines on PPI and Retweet, while this algorithm is not
very effective on the Reddit. In other words, the information of node-centrality
is insufficient for the neighborhood definition. Thus, we choose to measure the
correlations between target node and its neighbors. GeniePath-lazy aims to learn
such correlations, while the learned correlations can not support the neighbor
sampling. In addition, we observe that the uniform-sampling based algorithms
(i.e., GraphSAGE, GIN and GeniePath-lazy) perform well on the Reddit, which
means more diverse neighbors can provide more benefits, and that is why the
drop-bottom strategy prefers a smaller dropping rate on the Reddit 5. Con-
versely, a larger dropping rate leads to a better prediction result on both PPI
and Retweet. More details about tuning the dropping rate will be discussed later.

Comparison with CV-GCN. CV-GCN enjoys a similar convergence with
the exact algorithm even using two neighbors per node, so we set its neighbor
sampling size to be 2. The initial learning rate of this model is provided in [4].
The neighbor sampling size Sl of GraphRFA is constrained within 50. In our
model, we do not implement the preprocessing technique proposed in CV-GCN,
which makes the first neighbor averaging exact. We observe that the supervised
GraphRFA prefers a small dropping rate on both PPI and Reddit, thus we set
the dropping rate to be 0 on PPI and Reddit in this experiment. Results are
shown in Figure 4. GraphRFA outperforms CV-GCN on PPI and Retweet. Since
we follow GIN to define the node-level feature aggregator, we also compare with
GIN, and find that our model consistently outperforms GIN on every dataset.
Perhaps benefiting from the powerful feature aggregator, GIN performs better
than CV-GCN on the Retweet.

Parameter sensitivity: insight into how the drop-bottom works. The
drop-bottom strategy trades off between uniform sampling and non-uniform sam-
pling by adjusting the dropping rate, where the uniform sampling provides more

5 We set the dropping rate to be 0.2 on the Reddit.
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Fig. 5. Sensitivity analysis of dropping rate in the drop-bottom strategy. Testing results
of supervised and unsupervised node classification are shown.
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Fig. 6. Necessity of the field-level feature aggregation. Validation results of the super-
vised node classification are shown.

diverse node features, while the non-uniform sampling aims to capture features
from the more reliable neighbors. Here we explore how different dropping rates
influence the performance of GraphRFA. We run all models for 300 times.

Figure 5 shows the experimental results. Generally, we can see that super-
vised model prefers a smaller dropping rate than the unsupervised model. Since
the supervised model is capable of learning a suitable aggregation function to
weight different neighbors by the task labels, the more diverse neighbors can
provide more benefits. On the contrary, the unsupervised model largely depends
on the graph structure, thus highly reliable neighbors deserve more attentions
due to the missing of the downstream labels. We can also observe the oppo-
site choosing of dropping rate on Retweet and Reddit. Because in the political
retweet network, users usually have clear attitude, which results in the more
important role taken by the close neighbors than random neighbors on node
representations. However, users in Reddit discuss various topics, and their inter-
ests are diverse. Only keeping the close neighbors may harm the performance of
user representation learning.
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Necessity of the field-level feature aggregation. In this section, we only
consider one kind of measures (i.e., the similarity/centrality-based link reliabil-
ity) then use the node-level aggregator to generate node representations, denoted
as GraphRFA-sim and GraphRFA-cen. Specially, the adjusted dropping rates of
GraphRFA-sim and GraphRFA-cen are directly applied to GraphRFA∗. We also
compare with GIN which adopts the uniform sampling. Taking the supervised
setting as an example, Figure 6 shows that the centrality-based link reliability
plays a key role on both PPI and Retweet, and the similarity-based link reliabil-
ity is also necessary for the Retweet. GIN performs better than GraphRFA-sim
and GraphRFA-cen on the Reddit, that is because uniform sampling provides
more benefits on this dataset discussed in the previous section. The field-level
aggregator improves the prediction result on the Reddit.

6 Conclusion

In this paper, we introduce an graph convolutional network, called GraphRFA,
that captures reliable features from the node’s neighborhood by a reliability-
based feature aggregation mechanism. Theoretical analysis provides insight into
how our model guarantees the permutation invariant property for graph data. In
the experiments, we evaluate the effectiveness of GraphRFA on different datasets
through supervised learning and unsupervised learning. Nonetheless, some exten-
sions are possible too, such as learning an optimal dropping rate and extending
GraphRFA to the heterogeneous graphs.
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20. Lü, L., Zhou, T.: Link prediction in complex networks: A survey. Physica A Sta-
tistical Mechanics and Its Applications 390(6), 1150–1170 (2011)

21. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social represen-
tations. In: KDD (2014)

22. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph
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