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Abstract

Conformity influence is the inclination of a person to
be influenced by others. In this paper, we study how
the conformity tendency of a person changes with her
role, as defined by her structural properties in a so-
cial network. We first formalize conformity influence
using a utility function based on the conformity the-
ory from social psychology, and then propose a proba-
bilistic graphical model, referred to as Role-Conformity
Model (RCM), for modeling the role-aware confor-
mity influence between users by incorporating the util-
ity function. We apply the proposed RCM to several
academic research networks, and discover that people
with higher degree and lower clustering coefficient are
more likely to conform to others. We also evaluate RCM
through the task of word usage prediction in academic
publications, and show significant improvements over
baseline models.

1 Introduction
In social networks, conformity influence is the inclination
of a person to be influenced by others by yielding to per-
ceived group pressure and copying the behavior and beliefs
of others. The earliest study on conformity influence dates
back to the 1930’s by social psychologists (Jenness 1932;
Sherif 1935). Since then, precedent work extensively stud-
ied how conformity affects individuals’ actions. The well-
known experiments in (Asch 1955) showed that over 75%
of people tend to conform to others in varying degrees. Ex-
isting work (Bernheim 1994; Cialdini and Goldstein 2003;
Kelman 1958; Aronson, Wilson, and Akert 2007) has repeat-
edly verified the significant effect of conformity influence in
our social life.

With the rapid proliferation of online social networks
such as Facebook and Twitter, quantitatively estimating
the conformity tendency of each individual becomes more
and more critical for applications such as viral marketing,
social influence maximization, etc. Yet, research on con-
formity influence in online social networks is just begin-
ning. For instance, Li et al. (Li, Bhowmick, and Sun 2011;
2013) studied the interplay between the influence and con-
formity of an individual, while Tang et al. (Tang, Wu, and
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Sun 2013) proposed a probabilistic factor graph model that
takes the effect of conformity into account when predicting
user behavior. Both focus on modeling the effect of confor-
mity influence at the individual level.

In this paper, we explore whether it is possible to summa-
rize several “roles”, i.e., prototypes, to concisely describe
the correlation between the conformity tendency of an indi-
vidual and her structural features in a network. Such role-
based modeling and analysis of conformity influence is ben-
eficial for applications such as recommendations, where data
sparsity or the cold-start problem cannot be overlooked. It is
also the key difference from existing social contagion stud-
ies (Kempe, Kleinberg, and Tardos 2003; Gruhl et al. 2004),
which ignore the effect of roles in information diffusion.

There are several questions to address when modeling
the conformity tendency of individuals based on their roles.
First, how to formalize the conformity theory in social psy-
chology? Second, how can roles be incorporated into such
formalization to model user actions? Furthermore, how can
role-based conformity be used to real applications? We sum-
marize our answers to these questions and our main results
in what follows.

Results We formalize conformity influence in terms of a
utility function based on the conformity theory (Bernheim
1994), and justify the proposed utility function by proving
the existence of Nash equilibria when users conduct actions
according to it. We further incorporate the utility function
into an application-oriented probabilistic model, known as
the Role-Conformity Model (RCM), to describe user behav-
iors. To the best of our knowledge, this is the first attempt
to formally connect the conformity theory from social psy-
chology to a computational model.

We apply the proposed model on several academic net-
works to observe correlations between people’s latent roles
and their conformity tendency. Interestingly, people with
higher degree and lower clustering coefficient are more
likely to conform to others. The phenomenon may be ex-
plained as that when a person has more collaborators with
the structure among them more diverse (i.e., the collabora-
tions between the neighbors in the local network are infre-
quent), she may become more open-minded and tend to ac-
cept new ideas from others. However, when the social circle
is restricted to a few collaborators, the person will limit her
mind and tend not to accept other ideas.



We evaluate the proposed RCM through the task of word
usage prediction, and results indicate that our model per-
forms much better (+3.6-4.1% in terms of average MAP and
+7.1-47.4% in terms of average AUC) than the basic TF-IDF
and PLSA.

2 Formalizing Conformity
In this section, we formalize conformity influence based on
the conformity theory from social psychology in terms of a
utility function, and prove the existence of Nash equilibria if
all users in a network behave according to it.

Conformity utility function The conformity theory sug-
gests that heterogeneous preferences do result in heteroge-
neous behaviors (Bernheim 1994). Everyone in a group ex-
presses her own individuality. Yet, even individualists suc-
cumb somewhat to the desire for status (esteem or popular-
ity) and shade their choices toward the social norm. This is
because people seeking status care about how someone else
feels about them through their actions. They are therefore
willing to suppress their individuality and conform to the
social norm, worrying that even small departures from the
social norm may seriously impair their popularity.

We formalize the conformity theory in terms of a utility
function. We use a binary value to represent whether a user
vi adopts an action (yi = 1) or not (yi = 0). Given the de-
cision yi, we model the utility vi obtained from her decision
from two aspects. One is the individual’s intrinsic utility in
the absence of all other neighbors, the other is the esteem
acquired through conforming:

f(yi) = (1− λi) d(yi, ŷi) + λi
∑

j∈N(i)

d(yi, yj) (1)

where ŷi represents the intrinsic preferred selection of user
vi, λi represents the conformity tendency of vi, and N(i)
denotes the neighbors of vi at the time when vi makes the
decision. d(., .) is a metric that gives a utility of 1 when two
decisions are the same, and 0 otherwise.

Nash equilibria We provide an induction method to prove
that there exists Nash equilibria if all users in a network
make the decisions for a given action according to the utility
function defined by Eq. (1). For brevity, we assume that the
parameter λ in Eq. (1) is fixed for different users. The proof
is the same for different λ.

The proof is straightforward when there is only one user
in a network. For a network with two users, when their in-
trinsic preferred selections are the same, a Nash equilibrium
exists because they will make the same decision. When their
preferred selections are different, λ determines the final se-
lection. If λ < 0.5, a Nash equilibrium exists because they
will select their own preferences respectively. If λ > 0.5,
two Nash equilibria exist because they will both select ŷ1 or
ŷ2.

Finally, we prove that if a Nash equilibrium exists in a
network with k users (k-network), a Nash equilibrium will
definitely exist in any (k+1)-network obtained by adding an
additional user, vk+1, to it. The general idea is to investigate
whether the neighbors of vk+1 will change their decisions

when vk+1 joined a k-network that has already arrived at a
Nash equilibrium.

We assume that the preferred selection of vk+1 is 1, i.e.,
ŷk+1 = 1. The proof is the same when ŷk+1 = 0. Given an
existing k-network, we denote the number of vk+1’s neigh-
bors with y = 1 as N1, and the number of vk+1’s neighbors
with y = 0 as N0. Thus, the utility of vk+1 is calculated as:

f(vk+1) =

{
(1− λ) + λN1 if yk+1 = 1

λN0 if yk+1 = 0

The utility of a neighbor vi of vk+1 is represented as:
f(yi) = (1−λ) d(yi, ŷi)+λ

∑
j∈N(i)

d(yi, yj)+λ d(yi, yk+1)

Suppose (1 − λ) + λN1 > λN0, vk+1 will decide to
adopt the action (i.e., yk+1 = 1). The proof is the same when
(1− λ) + λN1 < λN0.

We observe that the neighbors with yi = 1 will not change
their decisions. Otherwise, the utility obtained from the k-
network will decrease because the Nash equilibrium is dam-
aged, and the utility obtained from vk+1 will also decrease
because yi is changed differently from yk+1.

For the neighbors with yi = 0, if they change their de-
cisions, the marginal utility is λ − ci, where −ci is the
decreased utility triggered from the k-network because the
Nash equilibrium is damaged. λ is the increased utility
caused by vk+1 because yi is changed to be the same as
yk+1. If λ ≤ ci, none of the neighbors will change their de-
cisions. If λ > ci, the neighbors will change their decisions.
However, in such situation, vk+1 will not change back to 0,
because the utility will be reduced from (1−λ)+λ(N1+1)
to λ(N0 − 1).

To summarize, we can find a Nash equilibrium when an
additional user vk+1 is added to any k-network with a Nash
equilibrium already arrived.

3 Role-Conformity Model (RCM)
The aforementioned conformity utility function presents
elegant theoretical properties, although it is too simple
for real cases. In this section, we further extend it into
an application-oriented probabilistic model, named Role-
Conformity Model (RCM), to describe user behaviors. We
introduce in the model discrete time slices from t = 1 to T ,
and two hidden variables for characterizing the “role” of a
user as well as the “topic” of a certain action.
Definition 1 Individual attributes At time slice t, each user
vi is associated with an attribute vector of length H , where
the h-th attribute’s value is denoted by xi,t,h. Different net-
work properties of vi, such as clustering coefficient and de-
gree, can be used as individual attributes, with the choice of
which being application-dependent.

Definition 2 Role distribution We adopt the concept of
“role” to summarize user attributes into several clusters.
A user can play different roles at different time slices. For-
mally, we associate each user vi at each time slice t with
a vector ρi,t ∈ RR, where R is the number of roles in the
model (

∑R
r=1 ρ

r
i,t = 1). Each element ρri,t is the probability

that user vi belongs to role r at t.



Definition 3 Topic distribution In social networks, a user
is usually interested in multiple topics. Formally, each user
vi is associated with a vector θi ∈ RK , where K is the
number of topics (

∑K
z=1 θ

z
i = 1). Each θzi is the probability

(intrinsic preference) of user vi choosing topic z.

Model description Based on the above definitions, we ex-
plain the proposed Role-Conformity Model. The basic idea
is that users’ role distribution is determined by not only at-
tributes but also actions. We use users’ attributes to deter-
mine her role distribution, which is then used as a prior
to guide the sampling process for users’ actions. Specifi-
cally, the model consists of two parts. The first part mod-
els the generation of individual attributes. For an individual
attribute, we first draw a role r from a multinomial distri-
bution, and then draw the value of the attribute from a nor-
mal distribution with respect to r. The second part models
the total utility of generating all the actions. Specifically, we
extend the utility function in Eq. (1) to further incorporate
the role and topic distributions of a user. Instead of binary
actions, each user is now allowed to take a set of actions,
denoted by W = {w}. When in role r, the utility function
of vi taking an action w is defined as:

γwi,r =

(1− λr) K∑
z=1

θzi φ
w
z + λr

1

|Ni|
∑
j∈Ni

K∑
z=1

θzjφ
w
z

 (2)

where φwz is a non-negative score of taking action w under
topic z, satisfying

∑
w φ

w
z = 1, Ni is the (directed) neigh-

borhood of vi in the social network, and λr is a weighting
factor similar to λi in Eq. (1). Note that we utilize a unified
λr for all the users in role r, to reduce the number of pa-
rameters. Since the neighborhood of different users in r can
be different, we normalize the gain a user obtained from her
neighbors by her neighborhood size. This modification does
not affect the conclusion of Section 2 since it is equivalent
to directly assigning the individual conformity tendency of
each user vi as λi = λr

|Ni|−(|Ni|−1)λr
.

The extended utility function is more general than the one
described in Eq. (1). It also has another probabilistic inter-
pretation and can be regarded as the likelihood of generating
action w, by tossing a coin s with distribution Bern(λr).
Then, if s = 1, w is determined by the individual’s intrinsic
topic distribution and is drawn from P (w|i) =

∑
z θ

z
i φ

w
z .

Otherwise, w is influenced by the neighbors’ topic distribu-
tion and is drawn from P (w|Ni) =

∑
j∈Ni

∑
z θ

z
jφ

w
z /|Ni|.

The complete generative process is summarized as:
• For the h-th attribute of user vi at time slice t:

– Draw a role r from multinomial distribution ρi,t;
– Draw the value of the attribute xi,t,h ∼ N (µr,h, σr,h).

• For an action w conducted by user vi at time t:
– Draw vi’s role r from multinomial distribution ρi,t;
– Obtain the utility of action w denoted by γwi,r (or apply

the probabilistic interpretation here).
For a given data set, we need to learn the parameters ρi,t,

µr,h, σr,h, as well as θi, φz and λr. We provide an applica-
tion example of RCM in what follows.
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Figure 1: Role-conformity model.

Application example: We are given a bibliographic dy-
namic network Gt = (V t, Et), where V t is the set of au-
thors up to time t and Et is the set of coauthor relationships
among them up to time t. Each author vi ∈ V t is associ-
ated with an attribute vector xi, containing her individual at-
tributes in the network. There is also a set of documents D,
where each d ∈ D can be represented by (Ad,Wd, Cd, t).
Ad ⊂ V t stands for the author set of d, Wd is the list of
words w in d, Cd ⊂ D is the set of documents cited by d,
and t is the time slice when d is published.

By regarding each word as an action, we can naturally
plug this data set into RCM. The only concern is that we
usually do not know which author wrote down which word
w in a document d with multiple authors, thus we assume
that each word is generated from an author randomly cho-
sen fromAd. We also need to prudently define the neighbor-
hood Ni of each author. Since the author is more likely to
be influenced by the documents she is citing, we model Ni
for author vi in document d by CAd =

⋃
d′∈Cd

Ad′ . In this
application, the individual features are defined based on the
co-author network. The neighbors an author conforms with
can also be their coauthors. However, we discover that con-
formity influence caused by coauthor relationships is not as
significant as that by citation relationships. Thus we investi-
gate conformity influence caused by citation relationships in
this paper. We omit the analysis result for space limitation.

Without loss of generality, we continue our discussions
based on the bibliographic data set to provide more technical
details about how to apply our model in a real application.
Figure 1 summarizes the RCM on a bibliographic data set.

Model learning We adopt the probabilistic interpretation
of Eq. (2) and use maximum-likelihood estimation (MLE)
for model learning. The likelihood for individual attribute
generation can be written as:

L1 =

A∏
i=1

T∏
t=1

H∏
h=1

R∑
r=1

ρri,t√
2πσ2

r,h

exp

[
− (xi,t,h − µr,h)2

2σ2
r,h

]

The likelihood of action generation can be written as:

L2 =
∏
d,w

∑
i∈Ad

∑R
r=1 ρ

r
i,tγ

w
r,i

|Ad|

The unified likelihood function is L = L1L2. It is in-
tractable to directly solve L. Thus we optimize L1 and L2



by EM algorithm respectively at each iteration. The product
operation provides a theoretical guarantee that the product
of lower bounds is also the lower bound of the product. We
explain the EM steps for L1 and L2 respectively as below.

To optimizeL1, we first estimate the posterior distribution
over r for each individual attribute xi,t,h in the E-step:

qri,t,h =

ρri,t√
2πσ2

r,h

exp
[
− (xi,t,h−µr,h)

2

2σ2
r,h

]
∑R
r=1

ρri,t√
2πσ2

r,h

exp
[
− (xi,t,h−µr,h)

2

2σ2
r,h

]
Then in M-step, we update parameters µr,h, σr,h by:

µr,h =

∑A
i=1

∑T
t=1 q

r
i,t,hxi,t,h∑A

i=1

∑T
t=1 q

r
i,t,h

σr,h =

√√√√∑A
i=1

∑T
t=1 q

r
i,t,h(xi,t,h − µr,h)2∑A

i=1

∑T
t=1 q

r
i,t,h

where µr,h and σr,h are the mean and variance of the h-th
attribute in role r.

In order to optimize the likelihood of action generation
L2, we first apply the E-step as:

ard,w,i =
ρri,tγ

w
r,i∑R

r=1 ρ
r
i,tγ

w
r,i

bd,w,i,r =

1
|CAd|

∑
j∈CAd

∑K
z=1 θ

z
jφ

w
z∑K

z=1 θ
z
i φ

w
z + 1

|CAd|
∑
j∈CAd

∑K
z=1 θ

z
jφ

w
z

czd,w,i,r =
θzi φ

w
z∑K

z=1 θ
z
i φ

w
z

where for eachw in d conducted by user vi, ard,w,i is the pos-
terior distribution over r, bd,w,i,r is the posterior distribution
of conforming, and czd,w,i,r is the posterior distribution over
topic z. And then in M-step, we update θzi , φwz , and λr as:

θzi ∝
D∑
d=1

∑
w∈Nd

R∑
r=1

ard,w,ibd,w,i,rc
z
d,w,i,r

+

D∑
d=1

∑
w∈Nd

∑
j∈Ad

R∑
r=1

ard,w,i (1− bd,w,i,r) ∑
j∈CAd

czd,w,j,r



φwz ∝
D∑
d=1

∑
i∈Ad

R∑
r=1

ard,w,ibd,w,i,rc
z
d,w,i,r

+

D∑
d=1

∑
i∈Ad

R∑
r=1

ard,w,i (1− bd,w,i,r) ∑
j∈CAd

czd,w,j,r



λr =

D∑
d=1

∑
w∈Nd

∑
i∈Ad

R∑
r=1

ard,w,ibd,w,i,r

where
∑
z θ

z
i = 1 and

∑
w φ

w
z = 1. The parameter ρri,t is

derived from both L1 and L2:

ρri,t =

∑H
h=1 q

r
i,t,h +

∑
d,w a

r
d,w,i∑R

r=1(
∑H
h=1 q

r
i,t,h +

∑
d,w a

r
d,w,i)

Please refer to the supplementary materials for derivation
details.

4 Experiments
In this section, we apply our proposed RCM on a public
available academic research data set1 to investigate the con-
formity tendency of authors when they write papers.

4.1 Experimental Setup

Data sets We collect the data sets as follows. We first select
eight domains from computer science, including database
and data mining (DB&DM), human computer interaction
(HCI), system and high performance computing (HP), soft-
ware engineering (SE), computational theory (CT), artifi-
cial intelligence and machine learning (AI&ML), computer
networks (CN), as well as computer vision and multimedia
(CV&MM). For each domain, we then collect all the papers
from the well-known journals and conferences in the domain
and the citation relationships among them. There are in total
231,728 papers, 269,508 authors and 347,735 citation rela-
tionships, where each author has on average 3.44 papers and
each paper has on average 1.68 citation relationships.

We design a task of word usage prediction to evaluate
our proposed model. The objective of the task is to predict
whether a user will write a given word in her paper title in
a given time period. Using word usage patterns to study so-
cial behaviors has been adopted in existing literature such
as (Danescu-Niculescu-Mizil et al. 2013). Specifically, we
split each data set into training and test set. The training set
contains the papers published in or before 2009, and the test
set contains the papers published after 2009. We construct
a coauthor network at each time slice and use the degree
and clustering coefficient as the individual attributes at each
time. Each paper can be viewed as a document with a list
of words as the actions performed by the authors. We run
our model on the training set and then predict the candidate
words (all the words appeared in both the training and test
set with stop words removed) that will be used for each can-
didate user (the user appeared in both the training and test
set). The probability of one user using a word, P (w|i), is
calculated as the expectation of γwi,r in Eq. (2) over role r
at time t, where t is the ending time of the training set, i.e.,
2009 in our setting, and Ni in Eq. (2) is the collection of au-
thors whose papers are cited by user vi within [t− δ, t]. We
empirically set δ as 3 years.

Since the word usage prediction is more like a ranking
problem, precision at top ranked results is preferred in eval-
uating the results. Specifically, given a candidate user vi, we
rank all the candidate words based on P (w|i). We view the
co-occurrence of word and user pairs in the test set as the
ground truth and use P@5 (Precision of top-5 predictions),

1http://arnetminer.org/citation/



P@10, Mean Average Precision (MAP), and area under the
ROC curve (AUC) to evaluate the ranking results for each
user and then aggregate the results for all the users together.

Baselines We compare our model with TF-IDF, the tradi-
tional probabilistic latent semantic analysis (PLSA) (Hof-
mann 1999) and the citation influence model (CIM) (Dietz,
Bickel, and Scheffer 2007).

TF-IDF: In TF-IDF, the probability of a user using a word
in the test set is calculated as the TF-IDF value of the user
writing the word in the training set. We view a document as
the aggregation of all the paper titles of a user to calculate
TF-IDF value.

PLSA: In PLSA, the probability of a user using a word is
calculated as P (w|i) =

∑K
z=1 θ

z
i φ

w
z . This method ignores

conformity influence and assumes that users write words
only based on their intrinsic preferences.

CTM: In CTM, the probability of one user using a word
is calculated as γwi,r in Eq. (2), where λi is directly learned
for each user in CTM, instead of for each role in RCM.

4.2 Experimental Results
Table 1 shows the performance of word usage prediction in
the collected data sets from eight different domains.

Better performance From Table 1, we can see that RCM
clearly outperforms TF-IDF and PLSA on all the eight data
sets (+3.6-4.1% in terms of average MAP and +7.1-47.4% in
terms of average AUC). TF-IDF and PLSA predict word us-
age only based on the intrinsic preference of a given user,
and ignore the situation where a user’s topic distribution
may change and become closer to her neighbors’ topic dis-
tribution over time. TF-IDF performs worse because it di-
rectly counts the frequency of words, which may be sparse
in paper titles. RCM also outperforms CIM on almost all
the data sets. Although CTM also considers both the intrin-
sic preference of a user and her conformity tendency, it suf-
fers from the problem of data sparsity. Specifically, CTM di-
rectly learns the conformity tendency of each user, which is
very difficult to be estimated accurately when very few his-
torical actions of the user and/or her neighbors are available
for model learning. In contrast, our model clusters similar
users (with similar individual attributes) into roles, and then
learns the conformity tendency of each role. The data spar-
sity problem can be well avoided by RCM.

Parameter Analysis There are two tunable parameters, K
and R, in RCM. K is the number of topics, which has been
analyzed in many previous research (Blei, Ng, and Jordan
2003). We experiment with different values of K, and ob-
serve that perplexity first rises and then stabilizes as K gets
large. We then fixK = 30 where the perplexity is stable and
then analyze the number of roles R. Figure 2 plots the cor-
relation between MAP/AUC and the number of roles on the
eight data sets. We find that both MAP and AUC present in-
creasing trend at the very beginning and soon become stable
when R gets large. The results indicate that our RCM model
is insensitive to the number of roles. Finally, we empirically
set R = 13 in our experiments.

Table 1: Performance of word usage prediction (%).
Query Method P@5 P@10 MAP AUC

DB&DM

TF-IDF 15.84 12.67 6.68 36.20
PLSA 20.10 15.49 9.26 77.61
CIM 22.26 17.98 11.59 85.50
RCM 30.40 24.94 14.16 86.90

HCI

TF-IDF 13.57 11.42 5.40 27.59
PLSA 14.25 11.65 5.71 67.37
CIM 18.67 15.34 8.12 73.39
RCM 19.16 15.40 8.92 75.32

HP
TF-IDF 15.71 12.95 7.08 38.70
PLSA 17.33 14.39 8.47 79.96
CIM 19.62 16.25 10.83 88.67
RCM 20.57 17.12 11.37 89.21

SE
TF-IDF 16.81 13.21 7.82 38.07
PLSA 4.20 2.60 2.60 81.15
CIM 21.43 16.42 12.16 85.55
RCM 25.31 19.98 12.54 85.27

CT
TF-IDF 19.18 15.10 11.56 46.80
PLSA 17.52 13.37 9.88 81.09
CIM 19.36 14.50 11.04 85.31
RCM 20.13 15.20 11.46 85.93

AI&ML

TF-IDF 19.14 15.39 8.25 42.02
PLSA 19.92 15.50 9.40 84.10
CIM 21.24 16.41 10.85 90.70
RCM 23.60 18.02 11.41 90.92

CN
TF-IDF 20.03 17.51 8.71 37.23
PLSA 26.68 20.33 12.99 80.63
CTM 29.36 21.62 14.75 86.92
RCM 31.20 23.35 15.22 88.41

CV&MM
TF-IDF 17.19 14.19 8.18 41.65
PLSA 19.88 14.78 09.64 78.85
CTM 22.09 16.12 11.10 85.02
RCM 24.49 18.37 11.50 85.63

Avg
TF-IDF 17.18 14.06 7.96 38.53
PLSA 17.49 13.51 8.49 78.85
CTM 21.75 16.83 11.31 85.13
RCM 24.36 19.05 12.07 85.95

Correlation between role and conformity influence The
learned parameter λ by RCM represents the conformity ten-
dency for different roles. The model also learns the mean
value of each individual attribute for a role, i.e., µr,h. Thus
we can represent each role as a vector of the mean values of
different network attributes and analyze the correlation be-
tween role and conformity tendency. We select two domains,
DB&DM and HP for further discussions. Figure 3 shows the
correlation between a role’s mean degree and its conformity
probability. We discover that the correlation follows a loga-
rithm function. When fitting the data points, we first remove
the roles with a small number of related users, where the
number of related users with respect to a role r is estimated
by summing up the probability ρri,t over all vi and t. We try
different forms of functions to fit the remaining data points
and select logarithm function with the largest R2. Figure 4
shows the correlation between a role’s mean clustering coef-
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Figure 2: Role number analysis.
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Figure 3: The correlation between mean degree of role and
conformity probability.

ficient and its conformity probability. We discover that one
kind of roles have clustering coefficient close to 0, and the
other kind of roles follows an exponential function. Since
papers are publicly published, anyone could read others’ pa-
pers and have almost the same opportunity to be influenced
by others. Thus the phenomenon in the two figures may be
explained as: when a person collaborates with more authors
and the coauthors are more structurally diverse (i.e., with a
small clustering coefficient), she may become more open-
minded and tend to accept new ideas from others. However,
when the social circle of the user is restricted to a few coau-
thors forming a dense collaboration network, the person will
be more conservative and tend not to accept other ideas.

5 Related work
Conformity is a type of social influence involving a change
in opinion or behavior in order to fit in with a group. Con-
siderable research (Asch 1955; Bernheim 1994; Cialdini and
Goldstein 2003; Kelman 1958) has been conducted on the
issue of conformity in social psychology. Recently, several
studies on conformity have been conducted on large social
networks. For example, Li et al. (Li, Bhowmick, and Sun
2011; 2013) studied the interplay between the influence and
conformity. Tang et al. (Tang, Wu, and Sun 2013) proposed
a factor graph model to quantify the effects of different con-
formity factors. However, both the studies do not consider
the problem of data sparsity. An individual’s conformity
cannot be estimated accurately if her historical actions are
few. To overcome this problem, we assign hidden roles to
users and then learn the correlation between roles and con-
formity tendency. Besides, to the best of our knowledge, this
is the first attempt to formally connect the conformity theory
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Figure 4: The correlation between mean clustering coeffi-
cient of role and conformity probability.

from social psychology to a computational model.
Social influence has been studied throughly. Kempe et

al. (Kempe, Kleinberg, and Tardos 2003) first proposed two
fundamental diffusion models to estimate the expected influ-
ence of given seed users. Bakshy et al. (Bakshy et al. 2012)
and Bond et al. (Bond et al. 2012) conducted randomized
controlled trials to identify the effect of social influence.
Dietz et al. (Dietz, Bickel, and Scheffer 2007) and Liu et
al. (Liu et al. 2012) used topic models to learn the influen-
tial strength between papers or users. Tang et al. (Tang et
al. 2009) and Tan et al. (Tan et al. 2011) used discrimina-
tive models to learn the weights of different influence fac-
tors. Gruhl et al. (Gruhl et al. 2004), Saito et al. (Kimura et
al. 2011) and Goyal et al. (Goyal, Bonchi, and Lakshmanan
2010) learned the influence probabilities of the time-decayed
diffusion models. However, they all focus on modeling how
users influence others, and ignore the inclination of the users
to be influenced.

6 Conclusion
We present the first attempt to connect the conformity the-
ory from social psychology to a computational model. We
first formalize conformity theory in terms of a utility func-
tion, and validate the utility function by proving the exis-
tence of Nash equilibria. We then extend and incorporate the
utility function into a probabilistic topic model that takes
the role and topic distributions of users into account. Our
model allows for mining the correlation between users’ hid-
den roles and conformity tendency. Our experiments on aca-
demic research networks show an interesting result that peo-
ple with higher degree and lower clustering coefficient are
more likely to conform to others. In addition, our method
also outperforms several baselines on the task of word usage
prediction in academic papers.
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